Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot. (English) Zbl 1429.57010

It is a well-known fact that any closed, orientable 3-manifold can be obtained as a surgery of a link in \(S^3\). It is possible that this link has only one component; i.e., it is a knot. The authors cite a conjectured algebraic characterization (due to M. Aschenbrenner et al. [3-manifold groups. Zürich: European Mathematical Society (EMS) (2015; Zbl 1326.57001)]) of the irreducible 3-manifolds \(M\) that are obtained through surgery on a knot in \(S^3\) based on the number of normal generators of \(\pi_1(M)\) and on \(H_1(M)\). Specifically, it is known that the result of surgery on non-trivial knots in \(S^3\) produces an irreducible 3-manifold with \(b_1(M) = 1\) and requiring only one normal generator of \(\pi_1(M)\), but the conjecture is that the converse holds. The authors have produced two infinite families of two-component links offering counter-examples to this conjecture, among which are the first known examples of irreducible homology \(S^1\times S^2\)’s which are not the result of surgery on a knot in \(S^3\). This marks a major milestone in the surgery classification of 3-manifolds.
The authors expressly assume prior knowledge of knot Floer homology as the veracity of their counter-examples is based in the \(d\)-invariants. For those with relatively little experience with knot Floer homology, this is not a total barrier to understanding; but the results are certainly more understandable with this prerequisite. It also doesn’t hurt to have a working knowledge of 4-manifold theory since the authors make use of some plumbing arguments as well as the Rohlin and Arf invariants.
The arguments do get a bit technical in places (including some work by cases), but the authors do an excellent job of highlighting the details on which the readers should focus their attention. This is especially true of the early sections, where all results are linked back to the original conjecture and the main results that disprove it. They also identify places where proofs can be extended to larger families of manifolds, including L-spaces. Also noteworthy are the exceptionally detailed surgery diagrams with clear, easily followed intermediate steps.
This article is a great introduction to the practical use of the invariants of knot Floer homology and 4-manifold theory. Though somewhat technical, this article is accessible to early-career researchers and advanced graduate students.


57K30 General topology of 3-manifolds
57K10 Knot theory
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
57M05 Fundamental group, presentations, free differential calculus
57R58 Floer homology
57R65 Surgery and handlebodies
57R90 Other types of cobordism


Zbl 1326.57001
Full Text: DOI arXiv


[1] Aschenbrenner, Matthias; Friedl, Stefan; Wilton, Henry, 3-manifold groups, EMS Series of Lectures in Mathematics, xiv+215 pp. (2015), European Mathematical Society (EMS), Z\"{u}rich · Zbl 1326.57001 · doi:10.4171/154
[2] J. W. Alexander, On the subdivision of \(3\)-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8. · JFM 50.0659.01
[3] Auckly, David, Surgery numbers of \(3\)-manifolds: a hyperbolic example. Geometric topology, Athens, GA, 1993, AMS/IP Stud. Adv. Math. 2, 21-34 (1997), Amer. Math. Soc., Providence, RI · Zbl 0889.57022
[4] Baldwin, John A., Heegaard Floer homology and genus one, one-boundary component open books, J. Topol., 1, 4, 963-992 (2008) · Zbl 1160.57009 · doi:10.1112/jtopol/jtn029
[5] Boyer, Steven; Lines, Daniel, Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math., 405, 181-220 (1990) · Zbl 0691.57004
[6] Borodzik, Maciej; N\'{e}methi, Andr\'{a}s, Heegaard-Floer homologies of \((+1)\) surgeries on torus knots, Acta Math. Hungar., 139, 4, 303-319 (2013) · doi:10.1007/s10474-012-0280-x
[7] Elkies, Noam D., A characterization of the \({\bf Z}^n\) lattice, Math. Res. Lett., 2, 3, 321-326 (1995) · Zbl 0855.11032 · doi:10.4310/MRL.1995.v2.n3.a9
[8] Gabai, David, Foliations and the topology of \(3\)-manifolds. III, J. Differential Geom., 26, 3, 479-536 (1987) · Zbl 0639.57008
[9] Gonz\'{a}lez-Acu\~{n}a, Francisco; Short, Hamish, Knot surgery and primeness, Math. Proc. Cambridge Philos. Soc., 99, 1, 89-102 (1986) · Zbl 0591.57002 · doi:10.1017/S0305004100063969
[10] Gersten, S. M., Selected problems. Combinatorial group theory and topology, Alta, Utah, 1984, Ann. of Math. Stud. 111, 545-551 (1987), Princeton Univ. Press, Princeton, NJ · Zbl 0616.20015
[11] Gordon, C. McA.; Luecke, J., Knots are determined by their complements, J. Amer. Math. Soc., 2, 2, 371-415 (1989) · Zbl 0678.57005 · doi:10.2307/1990979
[12] Gompf, Robert E.; Stipsicz, Andr\'{a}s I., \(4\)-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, xvi+558 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0933.57020 · doi:10.1090/gsm/020
[13] Hedden, Matthew, Knot Floer homology of Whitehead doubles, Geom. Topol., 11, 2277-2338 (2007) · Zbl 1187.57015 · doi:10.2140/gt.2007.11.2277
[14] K. Hendricks, J. Hom, and T. Lidman, Applications of involutive Heegaard Floer homology, arXiv:1802.02008, 2018. · Zbl 1473.57036
[15] Hedden, Matthew; Kim, Se-Goo; Livingston, Charles, Topologically slice knots of smooth concordance order two, J. Differential Geom., 102, 3, 353-393 (2016) · Zbl 1339.57011
[16] Hom, Jennifer; Karakurt, \c{C}a\u{g}r\i; Lidman, Tye, Surgery obstructions and Heegaard Floer homology, Geom. Topol., 20, 4, 2219-2251 (2016) · Zbl 1352.57021 · doi:10.2140/gt.2016.20.2219
[17] Hom, Jennifer; Lidman, Tye, A note on surgery obstructions and hyperbolic integer homology spheres, Proc. Amer. Math. Soc., 146, 3, 1363-1365 (2018) · Zbl 1383.57018 · doi:10.1090/proc/13925
[18] Hom, Jennifer, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications, 26, 2, 1740015, 24 pp. (2017) · Zbl 1360.57002 · doi:10.1142/S0218216517400156
[19] Hoffman, Neil R.; Walsh, Genevieve S., The big Dehn surgery graph and the link of \(S^3\), Proc. Amer. Math. Soc. Ser. B, 2, 17-34 (2015) · Zbl 1338.57007 · doi:10.1090/bproc/20
[20] Hedden, Matthew; Watson, Liam, On the geography and botany of knot Floer homology, Selecta Math. (N.S.), 24, 2, 997-1037 (2018) · Zbl 1432.57027 · doi:10.1007/s00029-017-0351-5
[21] Jaco, William, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, xii+251 pp. (1980), American Mathematical Society, Providence, R.I. · Zbl 0433.57001
[22] Lickorish, W. B. R., A representation of orientable combinatorial \(3\)-manifolds, Ann. of Math. (2), 76, 531-540 (1962) · Zbl 0106.37102 · doi:10.2307/1970373
[23] Levine, Adam Simon; Ruberman, Daniel, Generalized Heegaard Floer correction terms. Proceedings of the G\`“{o}kova Geometry-Topology Conference 2013, 76-96 (2014), G\'”{o}kova Geometry/Topology Conference (GGT), G\"{o}kova · Zbl 1333.57024
[24] Lisca, Paolo; Stipsicz, Andr\'{a}s I., Ozsv\'{a}th-Szab\'{o} invariants and tight contact three-manifolds. II, J. Differential Geom., 75, 1, 109-141 (2007) · Zbl 1112.57005
[25] The Kourovka notebook, 227 pp. (2014), Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk · Zbl 1372.20001
[26] Myers, Robert, Homology cobordisms, link concordances, and hyperbolic \(3\)-manifolds, Trans. Amer. Math. Soc., 278, 1, 271-288 (1983) · Zbl 0532.57006 · doi:10.2307/1999315
[27] Neumann, Walter D., An invariant of plumbed homology spheres. Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math. 788, 125-144 (1980), Springer, Berlin · Zbl 0436.57002
[28] Neumann, Walter D.; Raymond, Frank, Seifert manifolds, plumbing, \( \mu \)-invariant and orientation reversing maps. Algebraic and geometric topology, Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977, Lecture Notes in Math. 664, 163-196 (1978), Springer, Berlin · Zbl 0401.57018
[29] Ni, Yi; Wu, Zhongtao, Cosmetic surgeries on knots in \(S^3\), J. Reine Angew. Math., 706, 1-17 (2015) · Zbl 1328.57010 · doi:10.1515/crelle-2013-0067
[30] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173, 2, 179-261 (2003) · Zbl 1025.57016 · doi:10.1016/S0001-8708(02)00030-0
[31] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks and knot invariants, Adv. Math., 186, 1, 58-116 (2004) · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[32] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2), 159, 3, 1159-1245 (2004) · Zbl 1081.57013 · doi:10.4007/annals.2004.159.1159
[33] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Heegaard Floer homology and contact structures, Duke Math. J., 129, 1, 39-61 (2005) · Zbl 1083.57042 · doi:10.1215/S0012-7094-04-12912-4
[34] Ozsv\'{a}th, Peter S.; Szab\'{o}, Zolt\'{a}n, Knot Floer homology and integer surgeries, Algebr. Geom. Topol., 8, 1, 101-153 (2008) · Zbl 1181.57018 · doi:10.2140/agt.2008.8.101
[35] Rasmussen, Jacob Andrew, Floer homology and knot complements, 126 pp., ProQuest LLC, Ann Arbor, MI
[36] Saveliev, Nikolai, Invariants for homology \(3\)-spheres, Encyclopaedia of Mathematical Sciences 140, xii+223 pp. (2002), Springer-Verlag, Berlin · Zbl 0998.57001 · doi:10.1007/978-3-662-04705-7
[37] Seifert, H., Topologie Dreidimensionaler Gefaserter R\"{a}ume, Acta Math., 60, 1, 147-238 (1933) · JFM 59.1241.02 · doi:10.1007/BF02398271
[38] M. Stoffregen, \( \operatornamePin(2)\)-equivariant Seiberg-Witten Floer homology of Seifert fibrations, arXiv:1505.03234, https://arxiv.org/pdf/1505.03234.pdf, 2015. · Zbl 1471.57017
[39] Stoffregen, Matthew Henry, Applications of Pin(2)-equivariant Seiberg-Witten Floer Homology, 153 pp. (2017), ProQuest LLC, Ann Arbor, MI
[40] Taubes, Clifford Henry, Gauge theory on asymptotically periodic \(4\)-manifolds, J. Differential Geom., 25, 3, 363-430 (1987) · Zbl 0615.57009
[41] Wallace, Andrew H., Modifications and cobounding manifolds, Canad. J. Math., 12, 503-528 (1960) · Zbl 0108.36101 · doi:10.4153/CJM-1960-045-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.