×

zbMATH — the first resource for mathematics

Lectures on modular Deligne-Lusztig theory. (English) Zbl 1430.20010
Kessar, Radha (ed.) et al., Local representation theory and simple groups. Extended versions of short lecture courses given during a semester programme on “Local representation theory and simple groups” held at the Centre Interfacultaire Bernoulli of the EPF Lausanne, Switzerland, 2016. Zürich: European Mathematical Society (EMS). EMS Ser. Lect. Math., 107-177 (2018).
MSC:
20C20 Modular representations and characters
20G05 Representation theory for linear algebraic groups
18G80 Derived categories, triangulated categories
20G40 Linear algebraic groups over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Hiss, F. Lübeck and G. Malle, The Brauer trees of the exceptional Chevalley groups of typeE6,Manuscripta Math.87(1995), 131-144. Zbl0846.20017 · Zbl 0846.20017
[2] R.B. Howlett and G.I. Lehrer, On Harish-Chandra induction and restriction for modules of Levi subgroups.J. Algebra165(1994), 172-183. Zbl0802.20036 · Zbl 0802.20036
[3] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius,Invent. Math.38(1976), 101-159. Zbl0366.20031 · Zbl 0366.20031
[4] G. Lusztig, On the finiteness of the number of unipotent classes,Invent. Math.34(1976), 201-213. Zbl0371.20039 · Zbl 0371.20039
[5] G. Lusztig,Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics 39. American Mathematical Society, Providence, RI, 1978. Zbl0418.20037 · Zbl 0418.20037
[6] G. Lusztig,Characters of reductive groups over a finite field, Annals of Mathematics Studies 107, Princeton University Press, 1984. Zbl0556.20033 · Zbl 0556.20033
[7] J.S. Milne,Étale cohomology, Princeton Mathematical Series 33, Princeton University Press, Princeton, NJ, 1980. Zbl0433.14012
[8] A. Neeman,Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press, Princeton, NJ, 2001. Zbl0974.18008 · Zbl 0974.18008
[9] J. Rickard, Derived categories and stable equivalence,J. Pure Appl. Algebra61(1989), 303-317. Zbl0685.16016 · Zbl 0685.16016
[10] J. Rickard, Finite group actions and étale cohomology,Publ. Math. Inst. Hautes Étud. Sci.80 (1995), 81-94. Zbl0838.14013 · Zbl 0838.14013
[11] R. Rouquier, The derived category of blocks with cyclic defect groups,Derived equivalences for group rings, Lecture Notes in Mathematics 1685, Springer, Berlin, 1998.
[12] R. Rouquier, Complexes de chaînes étales et courbes de Deligne-Lusztig,J. Algebra257 (2002), 482-508. Zbl1030.18008 · Zbl 1030.18008
[13] R. Rouquier, Motives of Deligne-Lusztig varieties, preprint (2017). · Zbl 06701140
[14] J.P. Serre,Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer, New York-Heidelberg, 1977. Zbl0355.20006 · Zbl 0355.20006
[15] J. Shamash, Brauer trees for blocks of cyclic defect in the groupsG2(q)for primes dividing q2±q+1,J. Algebra123(1989), 378-396. Zbl0674.20004 · Zbl 0674.20004
[16] J. Thévenaz,G-algebras and modular representation theory, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon Press, New York, 1995. Zbl0837.20015 · Zbl 0837.20015
[17] D.L. White, Decomposition numbers of Sp(4,q)for primes dividingq±1,J. Algebra132 (1990), 488-500. Zbl0705.20010 · Zbl 0705.20010
[18] E. Wings,Über die unipotenten Charaktere der GruppenF4(q), Dissertation, Lehrstuhl D für Mathematik, RWTH Aachen, 1995. Zbl0858.20010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.