zbMATH — the first resource for mathematics

Dynamics of a discrete-time stage-structured predator-prey system with Holling type II response function. (English) Zbl 1430.37115
Summary: A discrete-time model of predator-prey dynamics with Holling type II response function is proposed. Each species considered has its age structure which is typical for natural communities. The bifurcations, dynamic modes and a possibility of its shifting are studied for the proposed model. The stability loss of a non-trivial fixed point is realised according to Neimark-Sacker and Feigenbaum scenarios. The phase space structure of multistability areas in which a variation of current numbers of prey or predator can shift the dynamic modes is analysed using basins of attraction. Particular attention is paid to the investigation of the feasible values of the parameters in which the model has a biological meaning. To understand the mechanisms of interspecific interaction influence on each species dynamics in a community, we compare cases with and without interspecific interaction. The presence of interspecific interaction in the community increases the variety of emerging dynamic modes of the predator population size.
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
Full Text: DOI
[1] Volterra, V.: Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris (1931) · JFM 57.0466.02
[2] Nicholson, A.J.: Supplement: the balance of animal populations. J. Anim. Ecol. 2(1), 131-178 (1933)
[3] Nicholson, A.J., Bailey, V.A.: The balance of animal populations. Proc. Zool. Soc. Lond. 105(3), 551-598 (1935)
[4] Kolmogorov, A.N., Petrovskij, I.G., Piskunov, N.S.: Investigation of the diffusion equation, coupled with increasing quantity, and its application to a certain biological problem. Bull. Mosc. State Univ. Ser. Math. Mech. 6(1), 1-26 (1937) (in Russian)
[5] Rosenzweig, A., MacArthur, R.H.: Graphical representation and stability conditions of predator – prey interaction. Am. Nat. 97, 209-223 (1963)
[6] Kolmogorov, A.N.: Qualitative study of mathematical models of population dynamics. Probl. Cybern. 5, 100-106 (1972) (in Russian)
[7] Bazykin, A.D.: Mathematical Biophysics of Interacting Populations. Nauka, Moskva (1985) (in Russian) · Zbl 0605.92015
[8] Hassell, M.P.: Host – parasitoid population dynamics. J. Anim. Ecol. 69, 543-566 (2000)
[9] Abakumov, A.I.: Community modeling with data uncertainty. Sib. Ekologicheskiy Zhurnal 2, 559-563 (2001) (in Russian)
[10] Abakumov, A.I., Kazakova, M.G.: Spatial model of species community. Far Eastern Math. J. 3(1), 102-107 (2002) (in Russian)
[11] Riznichenko, G.Yu., Rubin, A.B.: Biophysical Dynamics of Production Processes. Moskow-Izhevsk, Izhevsk Institute of Computer Studies (2004) (in Russian)
[12] Nedorezov, L.V.: Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast. LAP Lambert Academic Publishing, Saarbrucken (2012)
[13] Hebblewhite, M.: Wolf and elk predator – prey dynamics in Banff National Park. Thesis, University of Montana, Missoula (2000)
[14] Elmhagen, B., Hellström, P., Angerbjörn, A., Kindberg, J.: Changes in vole and lemming fluctuations in Northern Sweden 1960-2008 revealed by fox dynamics. Ann. Zool. Fenn. 48(3), 167-179 (2011)
[15] Keim, J.L., DeWitt, P.D., Lele, S.R.: Predators choose prey over prey habitats: evidence from a lynx-hare system. Ecol. Appl. 21(4), 1011-1016 (2011)
[16] Luiselli, L., Migliazza, R., Rotondo, P., Amori, G.: Macro-ecological patterns of a prey – predator system: rodents and snakes in West and Central Africa. Trop. Zool. 27(1), 1-8 (2014)
[17] Abakumov, A.I., Izrailsky, Y.G., Frisman, E.Ya.: Complex plankton dynamics in a topographic eddy. Math. Biol. Bioinform. 10(1), 416-426 (2015) (in Russian)
[18] Agiza, H.N., Elabbasy, E.M., El-Metwally, H., Elsadany, A.A.: Chaotic dynamics of a discrete prey – predator model with Holling type II. Nonlinear Anal. Real World Appl. 10(1), 116-129 (2009) · Zbl 1154.37335
[19] Hu, Z., Teng, Z., Zhang, L.: Stability and bifurcation analysis of a discrete predator – prey model with nonmonotonic functional response. Nonlinear Anal. Real World Appl. 12(4), 2356-2377 (2011) · Zbl 1215.92063
[20] Zhao, J., Yan, Y.: Stability and bifurcation analysis of a discrete predator – prey system with modified Holling-Tanner functional response. Adv. Differ. Equ. 2018, Article 402 (2018). https://doi.org/10.1186/s13662-018-1819-0 · Zbl 1448.92262
[21] Mistro, D.P., Rodrigues, L.A.D., Petrovskii, S.: Spatiotemporal complexity of biological invasion in a space- and time-discrete predator – prey system with the strong Allee effect. Ecol. Complex. 9, 16-32 (2012)
[22] Huang, T., Zhang, H.: Bifurcation, chaos and pattern formation in a space- and time-discrete predator – prey system. Chaos Solitons Fractals 91, 92-107 (2016) · Zbl 1372.92082
[23] Huang, T., Zhang, H., Yang, H., Wang, N., Zhang, F.: Complex patterns in a space- and time-discrete predator – prey model with Beddington-DeAngelis functional response. Commun. Nonlinear Sci. Numer. Simul. 43, 182-199 (2017)
[24] Zhong, J., Yu, Z.: Qualitative properties and bifurcations of Mistro-Rodrigues-Petrovskii model. Nonlinear Dyn. 91(4), 2063-2075 (2018) · Zbl 1392.37096
[25] Kon, R.: Multiple attractors in host – parasitoid interactions: coexistence and extinction. Math. Biosci. 201(Is. 1-2), 172-183 (2006) · Zbl 1093.92056
[26] Kang, Y., Armbruster, D., Kuang, Y.: Dynamics of a plant – herbivore model. J. Biol. Dyn. 2(Is. 2), 89-101 (2008) · Zbl 1140.92322
[27] Kang, Y., Armbruster, D.: Noise and seasonal effects on the dynamics of plant – herbivore models with monotonic plant growth functions. Int. J. Biomath. 4(3), 255-274 (2011) · Zbl 1247.37091
[28] Dong, Y., Sen, M., Banerjee, M., Takeuchi, Y., Nakaoka, S.: Delayed feedback induced complex dynamics in an Escherichia coli and Tetrahymena system. Nonlinear Dyn. 94(2), 1447-1466 (2018)
[29] Revutskaya, O.L., Kulakov, M.P., Frisman, E.Ya.: Bistability and bifurcations in modified Nicholson-Bailey model with age-structure for prey math. Biol. Bioinf. 14(1), 257-278 (2019). https://doi.org/10.17537/2019.14.257 (in Russian)
[30] Hilker, F.M., Malchow, H., Langlais, M., Petrovskii, S.V.: Oscillations and waves in a virally infected plankton system: part II: transition from lysogeny to lysis. Ecol. Complex. 3(3), 200-208 (2006)
[31] Sambath, M., Balachandran, K., Suvinthra, M.: Stability and Hopf bifurcation of a diffusive predator – prey model with hyperbolic mortality. Complexity 21(S1), 34-43 (2016) · Zbl 1349.92132
[32] Liao, X., Ouyang, Z., Zhou, S.: Permanence and stability of equilibrium for a two-prey one-predator discrete model. Appl. Math. Comput. 186, 93-100 (2007) · Zbl 1123.39012
[33] Kar, T.K., Ghosh, B.: Dynamic analysis of a biological economic model of prey – predator system with alternative prey. Int. J. Ecol. Econ. Stat. 25, 12-32 (2012)
[34] Liu, M., Bai, P.: Dynamics of a stochastic one-prey two-predator model with Lévy jumps. Appl. Math. Comput. 284, 308-321 (2016) · Zbl 1410.92102
[35] Mbava, W., Mugisha, J.Y.T., Gonsalves, J.W.: Prey, predator and super-predator model with disease in the super-predator. Appl. Math. Comput. 297, 92-114 (2017) · Zbl 1411.92252
[36] Srinivasu, P.D.N., Ismail, S., Naidu, C.R.: Global dynamics and controllability of a harvested prey – predator system. J. Biol. Syst. 9(1), 67-79 (2001)
[37] Ghosh, B., Kar, T.K.: Sustainable use of prey species in a prey – predator system: jointly determined ecological thresholds and economic trade-offs. Ecol. Model. 272, 49-58 (2014)
[38] Kar, T.K., Ghosh, B.: Impacts of maximum sustainable yield policy to prey – predator systems. Ecol. Model. 250, 134-142 (2013)
[39] Saito, Y., Takeuchi, Y.: A time-delay model for prey – predator growth with stage structure. Can. Appl. Math. Q. 11(3), 293-302 (2003) · Zbl 1087.34551
[40] Gourley, S.A., Kuang, Y.: A stage structured predator – prey model and its dependence on maturation delay and death rate. J. Math. Biol. 49(2), 188-200 (2004) · Zbl 1055.92043
[41] Abrams, P.A., Quince, C.: The impact of mortality on predator population size and stability in systems with stage-structured prey. Theor. Popul. Biol. 68(4), 253-266 (2005) · Zbl 1085.92038
[42] Sun, X.K., Huo, H.F., Xiang, H.: Bifurcation and stability analysis in predator – prey model with a stage-structure for predator. Nonlinear Dyn. 58(3), 497-513 (2009) · Zbl 1183.92085
[43] Xu, R.: Global dynamics of a predator – prey model with time delay and stage structure for the prey. Nonlinear Anal. Real World Appl. 12(4), 2151-2162 (2011) · Zbl 1223.34115
[44] Chakraborty, K., Chakraborty, M., Kar, T.K.: Optimal control of harvest and bifurcation of a prey – predator model with stage structure. Appl. Math. Comput. 217(21), 8778-8792 (2011) · Zbl 1215.92059
[45] Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey – predator fishery model with harvesting. Appl. Math. Comput. 218(18), 9271-9290 (2012) · Zbl 1246.92026
[46] Bhattacharyya, J., Pal, S.: Stage-structured cannibalism in a ratio-dependent system with constant prey refuge and harvesting of matured predator. Differ. Equ. Dyn. Syst. 24(3), 345-366 (2016) · Zbl 1358.34050
[47] Ma, X., Shao, Y., Wang, Z., Luo, M., Fang, X., Ju, Z.: An impulsive two-stage predator – prey model with stage-structure and square root functional responses. Math. Comput. Simul. 119, 91-107 (2016)
[48] Khajanchi, S.: Modeling the dynamics of stage-structure predator – prey system with Monod-Haldane type response function. Appl. Math. Comput. 302, 122-143 (2017) · Zbl 1411.34101
[49] Khajanchi, S., Banerjee, S.: Role of constant prey refuge on stage structure predator – prey model with ratio dependent functional response. Appl. Math. Comput. 314, 193-198 (2017) · Zbl 1426.34098
[50] Kundu, S., Maitra, S.: Dynamics of a delayed predator – prey system with stage structure and cooperation for preys. Chaos Solitons Fractals 114, 453-460 (2018) · Zbl 1415.92152
[51] Robertson, S.L., Henson, S.M., Robertson, T., Cushing, J.M.: A matter of maturity: To delay or not to delay? Continuous-time compartmental models of structured populations in the literature 2000-2016. Nat. Resour. Model. 31(1), e12160 (2018)
[52] Wikan, A.: From chaos to chaos. An analysis of a discrete age-structured prey – predator model. J. Math. Biol. 43(6), 471-500 (2001) · Zbl 0996.92031
[53] Wikan, A.: An analysis of discrete stage-structured prey and prey – predator population models. Discrete Dyn. Nat. Soc. ID 9475854 (2017). https://doi.org/10.1155/2017/9475854 · Zbl 1369.92105
[54] Tang, S., Chen, L.: A discrete predator – prey system with age-structure for predator and natural barriers for prey. Math. Model. Numer. Anal. 35(4), 675-690 (2001) · Zbl 0993.39009
[55] Agarwal, M., Devi, S.: Persistence in a ratio-dependent predator – prey-resource model with stage structure for prey. Int. J. Biomath. 3(3), 313-336 (2010) · Zbl 1403.92232
[56] Agarwal, M., Devi, S.: A stage-structured predator – prey model with density-dependent maturation delay. Int. J. Biomath. 4(3), 289-312 (2011) · Zbl 1238.92043
[57] Lefkovitch, L.P.: The study of population growth in organisms grouped by stages. Biometrics 21, 1-18 (1965)
[58] Caswell, H.: Matrix Population Models: Construction, Analysis, and Interpretation. Inc., Sunderland (2001)
[59] Frisman, E.Y., Neverova, G.P., Revutskaya, O.L.: Complex dynamics of the population with a simple age structure. Ecol. Model. 222(12), 1943-1950 (2011)
[60] Frisman, E.Ya., Neverova, G.P., Kulakov, M.P., Zhigalskii, O.A.: Multimode phenomenon in the population dynamics of animals with short live cycles. Dokl. Biol. Sci. 460, 42-47 (2015)
[61] Frisman, E.Ya., Neverova, G.P., Kulakov, M.P.: Change of dynamic regimes in the population of species with short life cycles: results of an analytical and numerical study. Ecol. Complex. 27, 2-11 (2016). https://doi.org/10.1016/j.ecocom.2016.02.001
[62] Neverova, G.P., Yarovenko, I.P., Frisman, E.Y.: Dynamics of populations with delayed density dependent birth rate regulation. Ecol. Model. 340, 64-73 (2016)
[63] Neverova, G.P., Kulakov, M.P., Frisman, E.Y.: Changes in population dynamics regimes as a result of both multistability and climatic fluctuation. Nonlinear Dyn. 97, 1-16 (2019). https://doi.org/10.1007/s11071-019-04957-z
[64] Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Ent. Soc. Can. 45, 1-60 (1965)
[65] Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapure (1998). 193
[66] Angerbjorn, A., Tannerfeldt, M., Erlinge, S.: Predator – prey relationships: arctic foxes and lemmings. J. Anim. Ecol. 68(1), 34-49 (1999)
[67] Zhdanova, O.L., Frisman, E.Ya.: Mathematical modeling of the mechanism of differentiation of reproductive strategies in natural populations (on example of arctic foxes, Alopex lagopus). Comput. Res. Model. 8(2), 213-228 (2016) (in Russian)
[68] Zhdanova, O., Frisman, E.: Ecological-genetic approach in modeling the natural evolution of a population: prospects and special aspects of verification. Ecol. Complex. 27, 40-47 (2016). https://doi.org/10.1016/j.ecocom.2015.08.003
[69] Axenovich, T.I., Zorkoltseva, I.V., Akberdin, I.R., Beketov, S.V., Kashtanov, S.N., Zakharov, I.A., Borodin, P.M.: Inheritance of litter size at birth in farmed arctic foxes (Alopex lagopus, Canidae, Carnivora). Heredity 98(2), 99-105 (2007)
[70] Fishman, B.E., Frisman, E.Ya., Shlufman, K.V.: Interval-periodic dynamics of recurrent equations. Inf. Control Syst. 3, 66-73 (2013) (in Russian)
[71] Kaikusalo, A., Angerbjörn, A.: The arctic fox population in Finnish Lapland during 30 years, 1964-1993. In: Annales Zoologici Fennici: Finnish Zoological and Botanical Publishing Board, pp. 69-77 (1995)
[72] Angerbjörn, A., Tannerfeldt, M., Lundberg, H.: Geographical and temporal patterns of lemming population dynamics in Fennoscandia. Ecography 24(3), 298-308 (2001)
[73] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 3rd edn. Springer, Berlin (2004) · Zbl 1082.37002
[74] Kuznetsov, A.P., Sedova, J.V.: Bifurcations of three- and four-dimensional maps: universal properties. Russ. J. Nonlinear Dyn. 20(5), 461-471 (2012) (in Russian) · Zbl 1274.34117
[75] Kuznetsov, A.P., Savin, A.V., Sedova, Yu.V, Tyuryukin, L.V.: Bifurcations of Maps. Publishing Center “Science, Saratov (2012) (<Emphasis Type=”Bold”>in Russian)
[76] Chow, S.-N., Li, Ch., Wang, D.: Normal Forms and Bifurcations of Planar Vector Fields. Cambridge University Press, Cambridge (1994)
[77] Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11(5), 559-623 (1954)
[78] Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multi-dimensional difference equation. Lect. Notes Math. 730, 204-227 (1979)
[79] Neverova, G.P., Abakumov, A.I., Yarovenko, I.P., Frisman, E.Ya.: Mode change in the dynamics of exploited limited population with age structure. Nonlinear Dyn. 94, 827-844 (2018). https://doi.org/10.1007/s11071-018-4396-6
[80] Hersteinsson, P., Macdonald, D.W.: Diet of Arctic foxes (Alopex lagopus) in Iceland. J. Zool. 240, 457-474 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.