Björklund, Michael; Fish, Alexander Approximate invariance for ergodic actions of amenable groups. (English) Zbl 1432.37003 Discrete Anal. 2019, Paper No. 6, 56 p. (2019). Summary: We develop in this paper some general techniques to analyze action sets of small doubling for probability measure-preserving actions of amenable groups.As an application of these techniques, we prove a dynamical generalization of Kneser’s celebrated density theorem for subsets in \((\mathbb{Z},+)\), valid for any countable amenable group, and we show how it can be used to establish a plethora of new inverse product set theorems for upper and lower asymptotic densities. We provide several examples demonstrating that our results are optimal for the settings under study. Cited in 2 Documents MSC: 37A05 Dynamical aspects of measure-preserving transformations 37A25 Ergodicity, mixing, rates of mixing 37A30 Ergodic theorems, spectral theory, Markov operators 22D40 Ergodic theory on groups Keywords:action sets; aperiodicity; density theorems PDF BibTeX XML Cite \textit{M. Björklund} and \textit{A. Fish}, Discrete Anal. 2019, Paper No. 6, 56 p. (2019; Zbl 1432.37003) Full Text: DOI arXiv OpenURL References: [1] Vitaly Bergelson and Hillel Furstenberg. WM groups and Ramsey theory. Topology Appl., 156(16):2572-2580, 2009. 40 · Zbl 1231.05270 [2] Michael Björklund. Small product sets in compact groups. Fund. Math., 238(1):1-27, 2017. 13, 25, 26, 46, 50 [3] Michael Björklund. Product set phenomena for measured groups. Ergodic Theory Dynam. Systems, 38(8):2913-2941, 2018. 47, 48 · Zbl 1401.37005 [4] Michael Björklund and Alexander Fish. Product set phenomena for countable groups. Adv. Math., 275:47-113, 2015. 50 · Zbl 1395.37008 [5] Michael Björklund and Alexander Fish. Ergodic theorems for coset spaces. J. Anal. Math., 135(1):85-122, 2018. 49 · Zbl 1402.37007 [6] Michael Björklund and Tobias Hartnick. Analytic properties of approximate lattices. Arxiv preprint arXiv:1709.09942. 3 · Zbl 1496.22004 [7] Michael Björklund and Tobias Hartnick. Approximate lattices. Duke Math. J., 167(15):2903-2964, 2018. 3 · Zbl 1452.22002 [8] Michael Björklund, Tobias Hartnick, and Felix Pogorzelski. Aperiodic order and spherical diffraction, I: auto-correlation of regular model sets. Proc. Lond. Math. Soc. (3), 116(4):957-996, 2018. 3 · Zbl 1394.52022 [9] Jean Bourgain and Alex Gamburd. Uniform expansion bounds for Cayley graphs of SL 2 (F p ). Ann. of Math. (2), 167(2):625-642, 2008. 3 · Zbl 1216.20042 [10] Emmanuel Breuillard, Ben Green, and Terence Tao. The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci., 116:115-221, 2012. 3 · Zbl 1260.20062 [11] A. J. Chintschin. Drei Perlen der Zahlentheorie. Akademie-Verlag, Berlin, 1984. Reprint of the 1951 translation from the Russian, With a foreword by Helmut Koch. 3 [12] Manfred Einsiedler and Thomas Ward. Homogeneous dynamics: a study guide. In Introduction to modern mathematics, volume 33 of Adv. Lect. Math. (ALM), pages 171-201. Int. Press, Somerville, MA, 2015. 14, 38, 47 · Zbl 1364.37007 [13] G. A. Freȋman. Foundations of a structural theory of set addition. American Mathematical Society, Providence, R. I., 1973. Translated from the Russian, Translations of Mathematical Monographs, Vol 37. 3 · Zbl 0271.10044 [14] Harry Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math., 31:204-256, 1977. 48 · Zbl 0347.28016 [15] Eli Glasner. Ergodic theory via joinings, volume 101 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003. 15, 17, 32 · Zbl 1038.37002 [16] John T. Griesmer. Small-sum pairs for upper Banach density in countable abelian groups. Adv. Math., 246:220-264, 2013. 9 · Zbl 1297.11131 [17] H. A. Helfgott. Growth and generation in SL 2 (Z/pZ). Ann. of Math. (2), 167(2):601-623, 2008. 3 · Zbl 1213.20045 [18] Karl H. Hofmann and Sidney A. Morris. The structure of compact groups, volume 25 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2013. A primer for the student-a handbook for the expert, Third edition, revised and augmented. 50 · Zbl 1277.22001 [19] Renling Jin. Characterizing the structure of A + B when A + B has small upper Banach density. J. Number Theory, 130(8):1785-1800, 2010. 9 · Zbl 1201.11016 [20] J. H. B. Kemperman. On products of sets in a locally compact group. Fund. Math., 56:51-68, 1964. 3, 25, 26 [21] Martin Kneser. Abschätzung der asymptotischen Dichte von Summenmengen. Math. Z., 58:459-484, 1953. 3, 9 · Zbl 0051.28104 [22] Martin Kneser. Summenmengen in lokalkompakten abelschen Gruppen. Math. Z., 66:88-110, 1956. 3, 25, 26 [23] George W. Mackey. Ergodic transformation groups with a pure point spectrum. Illinois J. Math., 8:593-600, 1964. 15 · Zbl 0255.22014 [24] Henry B. Mann. A proof of the fundamental theorem on the density of sums of sets of positive integers. Ann. of Math. (2), 43:523-527, 1942. 3, 9 · Zbl 0061.07406 [25] Yves Meyer. Algebraic numbers and harmonic analysis. North-Holland Publishing Co., Amsterdam-London; · Zbl 0267.43001 [26] American Elsevier Publishing Co., Inc., New York, 1972. North-Holland Mathematical Library, Vol. 2. 3 [27] Alan L. T. Paterson. Amenability, volume 29 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988. 46 [28] Terence Tao. Product set estimates for non-commutative groups. Combinatorica, 28(5):547-594, 2008. 3 · Zbl 1254.11017 [29] André Weil. L’intégration dans les groupes topologiques et ses applications. Actual. Sci. Ind., no. 869. Hermann et Cie., Paris, 1940. [This book has been republished by the author at Princeton, N. J., 1941.]. 26 · JFM 66.1205.02 [30] Reinhard Winkler. Hartman sets, functions and sequences-a survey. In Probability and number theory-Kanazawa 2005, volume 49 of Adv. Stud. Pure Math., pages 517-543. Math. Soc. Japan, Tokyo, 2007. 6, 47 [31] Robert J. Zimmer. Ergodic theory and semisimple groups, volume 81 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1984 · Zbl 0571.58015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.