zbMATH — the first resource for mathematics

Donaldson-Thomas transformations of moduli spaces of G-local systems. (English) Zbl 1434.13022
Summary: M. Kontsevich and Y. Soibelman defined Donaldson-Thomas invariants of a 3d Calabi-Yau category equipped with a stability condition [“Stability structures, motivic Donaldson-Thomas invariants and cluster transformations”, Preprint, arXiv:0811.2435]. Any cluster variety gives rise to a family of such categories. Their DT invariants are encapsulated in a single formal automorphism of the cluster variety, called the DT-transformation. Given a stability condition, the DT-transformation allows to recover the DT-invariants.
Let \(\mathbb{S}\) be an oriented surface with punctures and a finite number of special points on the boundary, considered modulo isotopy. It gives rise to a moduli space \(\mathcal{X}_{\mathrm{PGL}_{\mathrm{m}}, \mathbb{S}}\), closely related to the moduli space of \(\mathrm{PGL}_{\mathrm{m}}\)-local systems on \(\mathbb{S}\), which carries a canonical cluster Poisson variety structure [V. Fock and A. Goncharov, Publ. Math., Inst. Hautes Étud. Sci. 103, 1–211 (2006; Zbl 1099.14025)]. For each puncture of \(\mathbb{S}\), there is a birational Weyl group action on the space \(\mathcal{X}_{\mathrm{PGL}_{\mathrm{m}}, \mathbb{S}}\). We prove that it is given by cluster Poisson transformations. We prove a similar result for the involution of \(\mathcal{X}_{\mathrm{PGL}_{\mathrm{m}}, \mathbb{S}}\) induced by dualizing a local system on \(\mathbb{S}\).
Let \(\mu\) be the total number of punctures and special points, and \(g(\mathbb{S})\) the genus of \(\mathbb{S}\). We assume that \(\mu > 0\). We say that \(\mathbb{S}\) is admissible if either \(g(\mathbb{S}) + \mu \geq 3\) and \(\mu > 1\) when \(\mathbb{S}\) has only punctures, or \(\mathbb{S}\) is an annulus with a special point on each boundary circle.
Using a combinatorial characterization of a class of DT transformations due to B. Keller [“Quiver mutation and combinatorial DT-invariants”, Preprint, arXiv:1709.03143], we describe the DT-transformation of the space \(\mathcal{X}_{\mathrm{PGL}_{\mathrm{m}}, \mathbb{S}}\) for any admissible \(\mathbb{S}\).
We show that the Weyl group and the involution act by cluster transformations of the dual moduli space \(\mathcal{A}_{\mathrm{SL}_{\mathrm{m}}, \mathbb{S}}\), and describe the DT-transformation of the space \(\mathcal{A}_{\mathrm{SL}_m, \mathbb{S}}\).
If \(\mathbb{S}\) admissible, combining our work with the work of M. Gross et al. [J. Am. Math. Soc. 31, No. 2, 497–608 (2018; Zbl 1446.13015)] we get a canonical basis in the space of regular functions on the cluster variety \(\mathcal{X}_{\mathrm{PGL}_{\mathrm{m}}, \mathbb{S}}\), and in the Fomin-Zelevinsky upper cluster algebra with principal coefficients [S. Fomin and A. Zelevinsky, Compos. Math. 143, No. 1, 112–164 (2007; Zbl 1127.16023)] related to the pair \((\mathrm{SL}_{\mathrm{m}},\mathbb{S})\), as predicted by Duality Conjectures [V. V. Fock and A. B. Goncharov, Ann. Sci. Éc. Norm. Supér. (4) 42, No. 6, 865–930 (2009; Zbl 1180.53081)].

13F60 Cluster algebras
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
Full Text: DOI
[1] Abrikosov, E., (2018), Yale University, PhD Thesis
[2] Berenstein, A.; Zelevinsky, A., Canonical bases for the quantum group of type \(A_r\) and piecewise-linear combinatorics, Duke Math. J., 82, 3, 473-502, (1996) · Zbl 0898.17006
[3] Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebra III: upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-56, (2005) · Zbl 1135.16013
[4] Bridgeland, T., Stability conditions on triangulated categories, Ann. of Math. (2), 166, 2, 317-345, (2007) · Zbl 1137.18008
[5] Bridgeland, T.; Smith, I., Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci., 121, 155-278, (2015) · Zbl 1328.14025
[6] Bucher, E., Maximal Green sequences for cluster algebras associated to the n-torus
[7] Bucher, E.; Mills, M. R., Maximal Green sequences for cluster algebras associated to the orientable surfaces of genus n with arbitrary punctures · Zbl 1423.13119
[8] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations I: mutations, Selecta Math. (N.S.), 14, 1, 59-119, (2008) · Zbl 1204.16008
[9] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc., 23, 3, 749-790, (2010) · Zbl 1208.16017
[10] Diaconescu, D.-E.; Donagi, R.; Pantev, T., Intermediate Jacobians and ADE Hitchin systems, Math. Res. Lett., 14, 5, 745-756, (2007) · Zbl 1135.32300
[11] Donaldson, S.; Thomas, R., Gauge theory in higher dimensions, (The Geometric Universe, Oxford, 1996, (1998), Oxford Univ. Press)
[12] Fock, V.; Goncharov, A. B., Cluster \(\mathcal{X}\)-varieties, amalgamation, and Poisson-Lie groups, (Prog. Math., (2005), Birkhäuser)
[13] Fock, V. V.; Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1-211, (2006) · Zbl 1099.14025
[14] Fock, V.; Goncharov, A. B., Dual Teichmüller and lamination spaces, (Handbook of Teichmüller Theory, vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, (2007), Eur. Math. Soc. Zürich), 647-684 · Zbl 1162.32009
[15] Fock, V.; Goncharov, A. B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér., (2009) · Zbl 1225.53070
[16] Fock, V.; Goncharov, A. B., The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math., 175, 2, 223-286, (2009) · Zbl 1183.14037
[17] Fock, V.; Goncharov, A. B., Cluster Poisson varieties at infinity, Selecta Math. (N.S.), (2016) · Zbl 1383.14018
[18] Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces. part I: cluster complexes, Acta Math., 201, 1, 83-146, (2008) · Zbl 1263.13023
[19] Fomin, S.; Thurston, D., Cluster algebras and triangulated surfaces. part II: lambda lengths · Zbl 07000309
[20] Fomin, S.; Zelevinsky, A., Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12, 2, 335-380, (1999) · Zbl 0913.22011
[21] Fomin, S.; Zelevinsky, A., The Laurent phenomenon, Adv. in Appl. Math., 28, 2, 119-144, (2002) · Zbl 1012.05012
[22] Fomin, S.; Zelevinsky, A., Cluster algebras. I. foundations, J. Amer. Math. Soc., 15, 2, 497-529, (2002) · Zbl 1021.16017
[23] Fomin, S.; Zelevinsky, A., Cluster algebras IV: coefficients, Compos. Math., 143, 1, 112-164, (2007) · Zbl 1127.16023
[24] Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing in coupled 2d-4d systems, J. High Energy Phys., 12, (2012) · Zbl 1397.81364
[25] Gaiotto, D.; Moore, G.; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403, (2013) · Zbl 1358.81150
[26] Gaiotto, D.; Moore, G.; Neitzke, A., Framed BPS states, Adv. Theor. Math. Phys., 17, 2, 241-397, (2013) · Zbl 1290.81146
[27] Gaiotto, D.; Moore, G.; Neitzke, A., Spectral networks, Ann. Henri Poincaré, 14, 7, 1643-1731, (2013) · Zbl 1288.81132
[28] Gaiotto, D.; Moore, G.; Neitzke, A., Spectral networks and snakes, Ann. Henri Poincaré, 15, 1, 61-141, (2014) · Zbl 1301.81262
[29] Ginzburg, V., Calabi-Yau algebras
[30] Golden, J.; Goncharov, A.; Spradlin, M.; Vergu, C.; Volovich, A., Motivic amplitudes and cluster coordinates
[31] Goncharov, A. B., Polylogarithms and motivic Galois groups, (Motives, Proc. Symp. Pure Math., vol. 55, Part 2, (1994)), 43-96 · Zbl 0842.11043
[32] Goncharov, A. B., Ideal webs and Calabi-Yau categories, to appear in the special volume dedicated to M. Kontsevich, Birkhäuser · Zbl 1392.13007
[33] Goncharov, A. B.; Shen, L., Geometry of canonical bases and mirror symmetry, Invent. Math., 202, 2, 487-633, (2015) · Zbl 1355.14030
[34] Gross, M.; Hacking, P.; Keel, S., Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci., 122, 65-168, (2015) · Zbl 1351.14024
[35] Gross, M.; Hacking, P.; Keel, S.; Kontsevich, M., Canonical bases for cluster algebras · Zbl 1446.13015
[36] Keller, B., On cluster theory and quantum dilogarithm identities, (Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., (2011), EMS Zürich), 85-116 · Zbl 1307.13028
[37] Keller, B., Cluster algebras and derived categories, (Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., (2012), Eur. Math. Soc. Zürich), 123-183 · Zbl 1299.13027
[38] Keller, B., Quiver mutation and combinatorial DT-invariants, Contribution to the FPSAC 2013
[39] Keller, B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2), 177, 1, 111-170, (2013) · Zbl 1320.17007
[40] Kontsevich, M.; Soibelman, Y., Affine structures and non-Archimedean analytic spaces, (Prog. Math., vol. 244, (2006), Birkhäuser Boston), 321-385 · Zbl 1114.14027
[41] Kontsevich, M.; Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations · Zbl 1202.81120
[42] Kontsevich, M.; Soibelman, Y., Cohomological Hall algebra, exponential Hodge structures, and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5, 2, 231-352, (2011) · Zbl 1248.14060
[43] Kontsevich, M.; Soibelman, Y., Wall crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, (Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., vol. 15, (2014), Springer Cham), 197-308 · Zbl 1326.14042
[44] Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3), 98, 3, 797-839, (2009) · Zbl 1241.16012
[45] Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3, 2, 447-498, (1990) · Zbl 0703.17008
[46] Morrison, A.; Mozgovoy, S.; Nagao, K.; Szendroi, B., Motivic Donaldson-Thomas invariants of the conifold and the refined topological vertex, Adv. Math., 230, 4-6, 2065-2093, (2012) · Zbl 1257.14028
[47] Nagao, K., Donaldson-Thomas theory and cluster algebras, Duke Math. J., 162, 7, 1313-1367, (2013) · Zbl 1375.14150
[48] Nakanishi, T.; Zelevinsky, A., On tropical dualities in cluster algebras, (Algebraic Groups and Quantum Groups, Cont. Math., vol. 565, (2012), AMS Providence), 217-226 · Zbl 1317.13054
[49] Seiberg, N., Electric-magnetic duality in supersymmetric non-abelian gauge theories, Nuclear Phys. B, 435, 1-2, 129-146, (1995) · Zbl 1020.81912
[50] Seidal, P.; Thomas, R., Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108, 1, 37-108, (2001) · Zbl 1092.14025
[51] Smith, I., Quiver algebras as fukaya categories, Geom. Topol., 19, 5, 2557-2617, (2015) · Zbl 1328.53109
[52] Weng, D., Donaldson-Thomas transformations of Grassmannians
[53] Weng, D., Donaldson-Thomas transformation of double Bruhat cells in general linear groups
[54] Weng, D., Donaldson-Thomas transformation of double Bruhat cells in semisimple Lie groups
[55] Zamolodchikov, B., On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B, 253, 3-4, 391-394, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.