Denisov, Denis; Sakhanenko, Alexander; Wachtel, Vitali First-passage times for random walks with nonidentically distributed increments. (English) Zbl 1434.60126 Ann. Probab. 46, No. 6, 3313-3350 (2018). Let \((S_n)_{n\in\mathbb{N}}\) be a random walk with independent, not necessarily identically distributed steps taking values on the real line. Assume that the random walk, properly normalized and rescaled, converges in distribution to a Brownian motion. For a deterministic sequence \((g_n)_{n\in\mathbb{N}}\), put \(T_g:=\inf\{n\in\mathbb{N}:S_n\leq g_n\}\).The main result of the paper gives the asymptotics of \(\mathbb{P}\{T_g>n\}\) as \(n\to\infty\) under a couple of additional assumptions. The asymptotic equivalent of \(\mathbb{P}\{T_g>n\}\) involves a slowly varying function denoted by \(U_g\). The authors find conditions under which \(\lim_{t\to\infty}U_g(t)\) exists and is finite. To prove the main result the authors work out a modification of the universality approach which is, roughly speaking, based on replacing random walks attracted to a Brownian motion with the Brownian motion itself. The aforementioned modification is achieved by exploiting an argument appealing directly to the functional central limit theorem for \((S_n)\) rather than the Komlós-Major-Tusnády coupling which is commonly used in this context. As a consequence of the result on the tail behavior the authors derive a functional limit theorem for \((S_n)_{n\in\mathbb{N}}\), again properly normalized and rescaled, conditionally on \(\{T_g>n\}\) as \(n\to\infty\). The assertions proved in the paper improve upon several earlier results available in the literature. Reviewer: Alexander Iksanov (Kiev) Cited in 3 ReviewsCited in 17 Documents MSC: 60G50 Sums of independent random variables; random walks 60G40 Stopping times; optimal stopping problems; gambling theory 60F17 Functional limit theorems; invariance principles Keywords:random walk; Brownian motion; first-passage time; overshoot; moving boundary × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Arak, T. V. (1975). The distribution of the maximum of the successive sums of independent random variables. Theory Probab. Appl.19 245–266. · Zbl 0321.60044 · doi:10.1137/1119032 [2] Aurzada, F. and Baumgarten, C. (2011). Survival probabilities of weighted random walks. ALEA Lat. Am. J. Probab. Math. Stat.8 235–258. · Zbl 1276.60057 [3] Bolthausen, E. (1976). On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab.4 480–485. · Zbl 0336.60024 · doi:10.1214/aop/1176996098 [4] Denisov, D. and Wachtel, V. (2010). Conditional limit theorems for ordered random walks. Electron. J. Probab.15 292–322. · Zbl 1201.60040 · doi:10.1214/EJP.v15-752 [5] Denisov, D. and Wachtel, V. (2012). Ordered random walks with heavy tails. Electron. J. Probab.17 no. 4, 21. · Zbl 1246.60069 · doi:10.1214/EJP.v17-1719 [6] Denisov, D. and Wachtel, V. (2015). Exit times for integrated random walks. Ann. Inst. Henri Poincaré Probab. Stat.51 167–193. · Zbl 1310.60049 · doi:10.1214/13-AIHP577 [7] Denisov, D. and Wachtel, V. (2015). Random walks in cones. Ann. Probab.43 992–1044. · Zbl 1332.60066 · doi:10.1214/13-AOP867 [8] Doney, R. A. (1995). Spitzer’s condition and ladder variables in random walks. Probab. Theory Related Fields101 577–580. · Zbl 0818.60060 · doi:10.1007/BF01202785 [9] Durrett, R. T., Iglehart, D. L. and Miller, D. R. (1977). Weak convergence to Brownian meander and Brownian excursion. Ann. Probab.5 117–129. · Zbl 0356.60034 · doi:10.1214/aop/1176995895 [10] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 3rd ed. Wiley, New York. · Zbl 0219.60003 [11] Grama, I., Lauvergnat, R. and Le Page, E. (2016). Limit theorems for affine markov walks conditioned to stay positive. Preprint. Available at arXiv:1601.02991. · Zbl 1396.60080 · doi:10.1214/16-AIHP814 [12] Grama, I., Lauvergnat, R. and Le Page, E. (2016). Limit theorems for markov walks conditioned to stay positive under a spectral gap assumption. Preprint. Available at arXiv:1607.07757. · Zbl 1430.60042 · doi:10.1214/17-AOP1197 [13] Grama, I., Le Page, É. and Peigné, M. (2014). On the rate of convergence in the weak invariance principle for dependent random variables with applications to Markov chains. Colloq. Math.134 1–55. · Zbl 1302.60057 [14] Grama, I., Le Page, É. and Peigné, M. (2017). Conditioned limit theorems for products of random matrices. Probab. Theory Related Fields168 601–639. · Zbl 1406.60015 [15] Greenwood, P. and Perkins, E. (1983). A conditioned limit theorem for random walk and Brownian local time on square root boundaries. Ann. Probab.11 227–261. · Zbl 0522.60030 · doi:10.1214/aop/1176993594 [16] Greenwood, P. and Perkins, E. (1985). Limit theorems for excursions from a moving boundary. Theory Probab. Appl.29 731–743. [17] Greenwood, P. E. and Novikov, A. A. (1987). One-sided boundary crossing for processes with independent increments. Theory Probab. Appl.31 221–232. · Zbl 0658.60103 · doi:10.1137/1131029 [18] König, W. and Schmid, P. (2010). Random walks conditioned to stay in Weyl chambers of type C and D. Electron. Commun. Probab.15 286–296. · Zbl 1226.60067 · doi:10.1214/ECP.v15-1560 [19] Novikov, A. (1983). The crossing time of a one-sided nonlinear boundary by sums of independent random variables. Theory Probab. Appl.27 688–702. · Zbl 0521.60055 · doi:10.1137/1127081 [20] Novikov, A. A. (1981). The martingale approach in problems on the time of the first crossing of nonlinear boundaries. Tr. Mat. Inst. Steklova158 130–152. · Zbl 0491.60038 [21] Novikov, A. A. (1996). Martingales, a Tauberian theorem, and strategies for games of chance. Theory Probab. Appl.41 716–729. · Zbl 0895.60047 · doi:10.1137/S0040585X9797571X [22] Sakhanenko, A. I. (2006). Estimates in the invariance principle in terms of truncated power moments. Sibirsk. Mat. Zh.47 1355–1371. · Zbl 1150.60364 [23] Seneta, E. (1976). Regularly Varying Functions. Lecture Notes in Mathematics508. Springer, Berlin. · Zbl 0324.26002 [24] Skorohod, A. V. (1977). On a representation of random variables. Theory Probab. Appl.21 628–632. · Zbl 0362.60004 [25] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Stat.36 423–439. · Zbl 0135.18701 · doi:10.1214/aoms/1177700153 [26] Uchiyama, K. (1980). Brownian first exit from and sojourn over one-sided moving boundary and application. Z. Wahrsch. Verw. Gebiete54 75–116. · Zbl 0431.60080 · doi:10.1007/BF00535355 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.