Anchored isoperimetric profile of the infinite cluster in supercritical bond percolation is Lipschitz continuous. (English) Zbl 1434.60282

Summary: We consider the standard model of i.i.d. first passage percolation on \(\mathbb{Z}^d\) given a distribution \(G\) on \(\mathbb{R}_+ \). We consider a cube oriented in the direction \(\overrightarrow{v}\) whose sides have length \(n\). We study the maximal flow from the top half to the bottom half of the boundary of this cube. We already know that the maximal flow renormalized by \(n^{d-1}\) converges towards the flow constant \(\nu_G(\overrightarrow{v})\). We prove here that the map \(p\mapsto \nu_{p\delta_1+(1-p)\delta_0}\) is Lipschitz continuous on all intervals \([p_0,p_1]\subset (p_c(d),1)\) where \(p_c(d)\) denotes the critical parameter for i.i.d. bond percolation on \(\mathbb{Z}^d \). For \(p>p_c(d)\), we know that there exists almost surely a unique infinite open cluster \(\mathcal{C}_p \) [8]. We are interested in the regularity properties in \(p\) of the anchored isoperimetric profile of the infinite cluster \(\mathcal{C}_p \). For \(d\geq 2\), using the result on the regularity of the flow constant, we prove here that the anchored isoperimetric profile defined in [4] is Lipschitz continuous on all intervals \([p_0,p_1]\subset (p_c(d),1)\).


60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
Full Text: DOI arXiv Euclid


[1] Marek Biskup, Oren Louidor, Eviatar B. Procaccia, and Ron Rosenthal. Isoperimetry in two-dimensional percolation. Communications on Pure and Applied Mathematics, 68(9):1483-1531. · Zbl 1331.82025
[2] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings of the Princeton conference in honor of Professor S. Bochner, pages 195-199, 1969.
[3] Olivier Couronné and Reda Jürg Messikh. Surface order large deviations for 2D FK-percolation and Potts models. Stochastic Processes and their Applications, 113(1):81-99, 2004. · Zbl 1080.60020
[4] Barbara Dembin. Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher. ALEA Lat. Am. J. Probab. Math. Stat, 17, 205-252, 2020. · Zbl 1428.60135
[5] Olivier Garet, Régine Marchand, Eviatar B. Procaccia, and Marie Théret. Continuity of the time and isoperimetric constants in supercritical percolation. Electron. J. Probab., 22:35 pp., 2017. · Zbl 1388.60159
[6] Julian Gold. Isoperimetry in supercritical bond percolation in dimensions three and higher. Ann. Inst. H. Poincaré Probab. Statist., 54(4):2092-2158, 11 2018. · Zbl 1403.60084
[7] G. Grimmett and H. Kesten. First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete, 66(3):335-366, 1984. · Zbl 0525.60098
[8] Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.
[9] J. M. Hammersley and D. J. A. Welsh. First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif, pages 61-110. Springer-Verlag, New York, 1965. · Zbl 0143.40402
[10] Harry Kesten. Surfaces with minimal random weights and maximal flows: a higher dimensional version of first-passage percolation. Illinois Journal of Mathematics, 31(1):99-166, 1987. · Zbl 0591.60096
[11] R. Rossignol and M. Théret. Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation. Annales de l’I.H.P. Probabilités et statistiques, 46(4):1093-1131, 2010. · Zbl 1221.60144
[12] Raphaël Rossignol and Marie Théret. Existence and continuity of the flow constant in first passage percolation. Electron. J. Probab., 23:42 pp., 2018. · Zbl 1415.60119
[13] J. Taylor. Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. AMS, 27:419-427, 1975.
[14] G. Wulff. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen, volume 34. 1901.
[15] Yu Zhang. Critical behavior for maximal flows on the cubic lattice. Journal of Statistical Physics, 98(3-4):799-811, 2000. · Zbl 0991.82019
[16] Yu Zhang. Limit theorems for maximum flows on a lattice. Probability Theory and Related Fields, May 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.