×

A symplectic refinement of shifted Hecke insertion. (English) Zbl 1435.05236

Summary: A. S. Buch et al. [Math. Ann. 340, No. 2, 359–382 (2008; Zbl 1157.14036)] defined Hecke insertion to formulate a combinatorial rule for the expansion of the stable Grothendieck polynomials \(G_\pi\) indexed by permutations in the basis of stable Grothendieck polynomials \(G_\lambda\) indexed by partitions. Patrias and Pylyavskyy introduced a shifted analogue of Hecke insertion whose natural domain is the set of maximal chains in a weak order on orbit closures of the orthogonal group acting on the complete flag variety. We construct a generalization of shifted Hecke insertion for maximal chains in an analogous weak order on orbit closures of the symplectic group. As an application, we identify a combinatorial rule for the expansion of “orthogonal” and “symplectic” shifted analogues of \(G_\pi\) in Ikeda and Naruse’s basis of \(K\)-theoretic Schur \(P\)-functions.

MSC:

05E14 Combinatorial aspects of algebraic geometry
14M15 Grassmannians, Schubert varieties, flag manifolds

Citations:

Zbl 1157.14036
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Angel, O.; Holroyd, A. E.; Romik, D.; Virág, B., Random sorting networks, Adv. Math., 215, 2, 839-868 (2007) · Zbl 1132.60008
[2] Buch, A. S., A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math., 189, 1, 37-78 (2002) · Zbl 1090.14015
[3] Buch, A. S.; Samuel, M., K-theory of minuscule varieties, J. Reine Angew. Math., 719, 133-171 (2016) · Zbl 1431.19001
[4] Buch, A. S.; Kresch, A.; Shimozono, M.; Tamvakis, H.; Yong, A., Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann., 340, 2, 359-382 (2008) · Zbl 1157.14036
[5] Can, M. B.; Joyce, M.; Wyser, B., Chains in weak order posets associated to involutions, J. Comb. Theory, Ser. A, 137, 207-225 (2016) · Zbl 1325.05183
[6] Edelman, P.; Greene, C., Balanced tableaux, Adv. Math., 63, 42-99 (1987) · Zbl 0616.05005
[7] Hamaker, Z.; Keilthy, A.; Patrias, R.; Webster, L.; Zhang, Y.; Zhou, S., Shifted Hecke insertion and the K-theory of OG \((n, 2 n + 1)\), J. Comb. Theory, Ser. A, 151, 207-240 (2017) · Zbl 1366.05118
[8] Hamaker, Z.; Marberg, E.; Pawlowski, B., Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, J. Comb. Theory, Ser. A, 160, 217-260 (2018) · Zbl 1394.05139
[9] Hamaker, Z.; Marberg, E.; Pawlowski, B., Involution words II: braid relations and atomic structures, J. Algebraic Comb., 45, 701-743 (2017) · Zbl 1362.05137
[10] Hamaker, Z.; Marberg, E.; Pawlowski, B., Transition formulas for involution Schubert polynomials, Sel. Math., 24, 2991-3025 (2018) · Zbl 1452.20002
[11] Hamaker, Z.; Marberg, E.; Pawlowski, B., Schur P-positivity and involution Stanley symmetric functions, Int. Math. Res. Not. (2017), rnx274
[12] Hamaker, Z.; Marberg, E.; Pawlowski, B., Fixed-point-free involutions and Schur P-positivity, J. Comb., 11, 1, 65-110 (2020) · Zbl 1427.05226
[13] Hansson, M.; Hultman, A., A word property for twisted involutions in Coxeter groups, J. Comb. Theory, Ser. A, 161, 220-235 (2019) · Zbl 1400.05279
[14] Hiroshima, T., Queer supercrystal structure for increasing factorizations of fixed-point-free involution words (2019), preprint · Zbl 1518.05201
[15] Hu, J.; Zhang, J., On involutions in symmetric groups and a conjecture of Lusztig, Adv. Math., 287, 1-30 (2016) · Zbl 1338.20004
[16] Hudson, T.; Ikeda, T.; Matsumura, T.; Naruse, H., Degeneracy loci classes in K-theory—determinantal and Pfaffian formula, Adv. Math., 320, 115-156 (2017) · Zbl 1401.19008
[17] Hultman, A., The combinatorics of twisted involutions in Coxeter groups, Trans. Am. Math. Soc., 359, 2787-2798 (2007) · Zbl 1166.20030
[18] Humphreys, J. E., Reflection Groups and Coxeter Groups (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0725.20028
[19] Ikeda, T.; Naruse, H., K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., 243, 22-66 (2013) · Zbl 1278.05240
[20] Lam, T.; Pylyavskyy, P., Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not. (2007), rnm 125 · Zbl 1134.16017
[21] Lascoux, A.; Schützenberger, M-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci., Paris Sér. 1 Math., 295, 629-633 (1982) · Zbl 0542.14030
[22] Luoto, K.; Mykytiuk, S.; van Willigenburg, S., An Introduction to Quasi-Symmetric Schur Functions, Springer Briefs in Mathematics (2013), Springer: Springer New York · Zbl 1277.16027
[23] Marberg, E., Positivity conjectures for Kazhdan-Lusztig theory on twisted involutions: the universal case, Represent. Theory, 18, 88-116 (2014) · Zbl 1307.20007
[24] Marberg, E., Bar operators for quasiparabolic conjugacy classes in a Coxeter group, J. Algebra, 453, 325-363 (2016) · Zbl 1347.20041
[25] Marberg, E., Bumping operators and insertion algorithms for queer supercrystals (2019), preprint · Zbl 1487.05274
[26] Marberg, E.; Pawlowski, B., K-theory formulas for orthogonal and symplectic orbit closures (2019), preprint
[27] Marberg, E.; Pawlowski, B., On some properties of symplectic Grothendieck polynomials (2019), preprint
[28] Nakagawa, M.; Naruse, H., Generating functions for the universal Hall-Littlewood P- and Q-functions (2018), preprint
[29] Patrias, R.; Pylyavskyy, P., Dual filtered graphs, J. Algebraic Comb., 1, 441-500 (2018) · Zbl 1397.05202
[30] Rains, E. M.; Vazirani, M. J., Deformations of permutation representations of Coxeter groups, J. Algebraic Comb., 37, 455-502 (2013) · Zbl 1277.20042
[31] Richardson, R. W.; Springer, T. A., The Bruhat order on symmetric varieties, Geom. Dedic., 35, 389-436 (1990) · Zbl 0704.20039
[32] Sagan, B., On selecting a random shifted Young tableau, J. Algorithms, 1, 3, 213-234 (1980) · Zbl 0468.05008
[33] Sagan, B., Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley, J. Comb. Theory, Ser. A, 45, 62-103 (1987) · Zbl 0661.05010
[34] Worley, D. R., A theory of shifted Young tableaux (1984), Massachusetts Institute of Technology, PhD thesis
[35] Wyser, B. J.; Yong, A., Polynomials for symmetric orbit closures in the flag variety, Transform. Groups, 22, 267-290 (2017) · Zbl 1400.14130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.