Estimating the use of public lands: integrated modeling of open populations with convolution likelihood ecological abundance regression. (English) Zbl 1435.62326

Summary: We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P10 Applications of statistics to biology and medical sciences; meta analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
60E07 Infinitely divisible distributions; stable distributions


rSGDLM; Stan
Full Text: DOI Euclid


[1] Abadi, F., Gimenez, O., Ullrich, B., Arlettaz, R., and Schaub, M. (2010). “Estimation of immigration rate using integrated population models.” Journal of Applied Ecology, 47(2): 393-400. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2010.01789.x
[2] Aktekin, T., Polson, N., and Soyer, R. (2018). “Sequential Bayesian Analysis of Multivariate Count Data.” Bayesian Anal., 13(2): 385-409. · Zbl 1407.62308
[3] Anderson, W. L. and David, L. M. (1998). “Results of the 1996-97 Illinois Pheasant Hunter Survey.” report, Illinois Department of Natural Resources, Division of Wildlife Resources, Office of Resource Conservation, Federal Aid Coordinator.
[4] Barker, R. J., Schofield, M. R., Link, W. A., and Sauer, J. R. (2018). “On the reliability of N-mixture models for count data.” Biometrics, 74(1): 369-377. · Zbl 1415.62044
[5] Brauer, F. and Castillo-Chavez, C. (2001). Mathematical Models in Population Biology and Epidemiology. Springer, New York, NY. · Zbl 0967.92015
[6] Brinley Buckley, E. M., Allen, C. R., Forsberg, M., Farrell, M., and Caven, A. J. (2017). “Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics.” Ecology and Society, 22(3).
[7] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: A Probabilistic Programming Language.” Journal of Statistical Software, Articles, 76(1): 1-32. https://www.jstatsoft.org/v076/i01
[8] Chandler, R. B., Muths, E., Sigafus, B. H., Schwalbe, C. R., Jarchow, C. J., and Hossack, B. R. (2015). “Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction.” Journal of Applied Ecology, 52(5): 1325-1333. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2664.12481
[9] Dail, D. and Madsen, L. (2011). “Models for Estimating Abundance from Repeated Counts of an Open Metapopulation.” Biometrics, 67(2): 577-587. · Zbl 1217.62164
[10] Greenberg, S. (2015). “Timelapse2.” http://saul.cpsc.ucalgary.ca/timelapse/pmwiki.php
[11] Gruber, L. F., Stuber, E. F., Wszola, L. S., and Fontaine, J. J. (2019). “Supplementary Material for “Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression”.” Bayesian Analysis.
[12] Gruber, L. F. and West, M. (2016). “GPU-Accelerated Bayesian Learning and Forecasting in Simultaneous Graphical Dynamic Linear Models.” Bayesian Anal., 11(1): 125-149. · Zbl 1359.62367
[13] Gruber, L. F. and West, M. (2017). “Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models.” Econometrics and Statistics, 3: 3-22.
[14] Guisan, A. and Thuiller, W. (2005). “Predicting species distribution: offering more than simple habitat models.” Ecology Letters, 10.
[15] Hanski, I. and Simberloff, D. (1997). “The Metapopulation Approach, Its History, Conceptual Domain, and Application to Conservation.” In Hanski, I. and Gilpin, M. E. (eds.), Metapopulation Biology, 5-26. San Diego: Academic Press. https://www.sciencedirect.com/science/article/pii/B9780123234452500031
[16] Hiller, T. L., Taylor, J. S., Lusk, J. J., Powell, L. A., and Tyre, A. J. (2015). “Evidence that the conservation reserve program slowed population declines of pheasants on a changing landscape in Nebraska, USA: Pheasant Populations and the CRP.” Wildlife Society Bulletin, 39.
[17] Huber, N., Kéry, M., and Pasinelli, G. (2017). “Occupancy dynamics of the Wood Warbler Phylloscopus sibilatrix assessed with habitat and remote sensing data.” Ibis, 159(3): 623-637. https://onlinelibrary.wiley.com/doi/abs/10.1111/ibi.12472
[18] Kéry, M. (2018). “Identifiability in N-mixture models: a large-scale screening test with bird data.” Ecology, 99(2): 281-288. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2093
[19] Kéry, M. and Schmid, H. (2006). “Estimating species richness: calibrating a large avian monitoring programme.” Journal of Applied Ecology, 43(1): 101-110. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2005.01111.x
[20] Knape, J. and Korner-Nievergelt, F. (2016). “On assumptions behind estimates of abundance from counts at multiple sites.” Methods in Ecology and Evolution, 7(2): 206-209. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12507
[21] Link, W. A., Schofield, M. R., Barker, R. J., and Sauer, J. R. (2018). “On the robustness of N-mixture models.” Ecology, 99(7): 1547-1551. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2362
[22] Lone, K., Loe, L. E., Gobakken, T., Linnell, J. D. C., Odden, J., Remmen, J., and Mysterud, A. (2014). “Living and dying in a multi-predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans.” Oikos, 123.
[23] Mckenzie, E. (1988). “Some ARMA models for dependent sequences of poisson counts.” Advances in Applied Probability, 20(4): 822-835. · Zbl 0664.62089
[24] Mecozzi, G. E. and Guthery, F. S. (2008). “Behavior of Walk-Hunters and Pointing Dogs During Northern Bobwhite Hunts.” Journal of Wildlife Management. http://www.bioone.org/doi/abs/10.2193/2007-555
[25] Morin, D. J., Fuller, A. K., Royle, J. A., and Sutherland, C. (2017). “Model-based estimators of density and connectivity to inform conservation of spatially structured populations.” Ecosphere, 8(1): e01623. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.1623
[26] Nebraska Game & Parks Commission (2018-05-09a). “Nebraska Public Access Atlas.” https://maps.outdoornebraska.gov/PublicAccessAtlas/
[27] Nebraska Game & Parks Commission (2018-05-09b). “Upland Hunting Guide.” http://outdoornebraska.gov/upland/
[28] Royle, J. A. (2004). “N-Mixture Models for Estimating Population Size from Spatially Replicated Counts.” Biometrics, 60(1): 108-115. · Zbl 1130.62380
[29] Ryan, E. L. and Shaw, B. (2011). “Improving Hunter Recruitment and Retention.” Human Dimensions of Wildlife, 16(5).
[30] Schaub, M. and Abadi, F. (2011). “Integrated population models: a novel analysis framework for deeper insights into population dynamics.” Journal of Ornithology, 152(1): 227-237. https://doi.org/10.1007/s10336-010-0632-7
[31] Schoen, R. (1988). “Practical Uses of Multistate Population Models.” Annual Review of Sociology, 14(1): 341-361. PMID: 12315442. https://doi.org/10.1146/annurev.so.14.080188.002013
[32] Sih, A., Ferrari, M. C. O., and Harris, D. J. (2011). “Evolution and behavioural responses to human-induced rapid environmental change.” Evolutionary Applications, 4(2): 367-387. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-4571.2010.00166.x
[33] Stedman, R., Diefenbach, D. R., Swope, C. B., Finley, J. C., Luloff, A. E., Zinn, H. C., San Julian, G. J., and Wang, G. A. (2004). “Integrating wildlife and human-dimensions research methods to study hunters.” Journal of Wildlife Management. http://www.bioone.org/doi/abs/10.2193/0022-541X(2004)068[0762:IWAHRM]2.0.CO;2
[34] Steutel, F. W. and van Harn, K. (1979). “Discrete Analogues of Self-Decomposability and Stability.” Ann. Probab., 7(5): 893-899. https://doi.org/10.1214/aop/1176994950 · Zbl 0418.60020
[35] Steutel, F. W., Vervaat, W., and Wolfe, S. J. (1983). “Integer-valued branching processes with immigration.” Advances in Applied Probability, 15(4): 713-725. · Zbl 0525.60086
[36] Stuber, E. F., Gruber, L. F., and Fontaine, J. J. (2017). “A Bayesian method for assessing multi-scale species-habitat relationships.” Landscape Ecology, 32(12): 2365-2381. https://doi.org/10.1007/s10980-017-0575-y
[37] Stuber, E. F., Gruber, L. F., and Fontaine, J. J. (2018). “Predicting species-habitat relationships: does body size matter?” Landscape Ecology. https://doi.org/10.1007/s10980-018-0648-6
[38] U.S. Fish and Wildlife Service (2016). “2016 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.” https://www2.census.gov/programs-surveys/fhwar/publications/2016/fhw16-nat.pdf
[39] U.S. Geological Survey (2018). “The Public Land Survey System (PLSS).” https://nationalmap.gov/small_scale/a_plss.html
[40] Zipkin, E. F., Rossman, S., Yackulic, C. B., Wiens, J. D., Thorson, J. T., Davis, R. J., and Grant, E. H. C. (2017). “Integrating count and detection-nondetection data to model population dynamics.” Ecology, 98(6): 1640-1650. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.1831
[41] Zipkin, E. F., Thorson, J. T., See, K., Lynch, H. J., Grant, E. H. C., Kanno, Y., Chandler, R. B., Letcher, B. H., and Royle, J. A. (2014). “Modeling structured population dynamics using data from unmarked individuals.” Ecology, 95(1): 22-29. https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/13-1131.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.