The valuation difference rank of a quasi-ordered difference field. (English) Zbl 1436.03202

Droste, Manfred (ed.) et al., Groups, modules, and model theory – surveys and recent developments. In Memory of Rüdiger Göbel. Proceedings of the conference on new pathways between group theory and model theory, Mülheim an der Ruhr, Germany, February 1–4, 2016. Cham: Springer. 399-414 (2017).
Summary: There are several equivalent characterizations of the valuation rank of an ordered or valued field. In this paper, we extend the theory to the case of an ordered or valued difference field (that is, ordered or valued field endowed with a compatible field automorphism). We introduce the notion of difference rank. To treat simultaneously the cases of ordered and valued fields, we consider quasi-ordered fields. We characterize the difference rank as the quotient modulo the equivalence relation naturally induced by the automorphism (which encodes its growth rate). In analogy to the theory of convex valuations, we prove that any linearly ordered set can be realized as the difference rank of a maximally valued quasi-ordered difference field. As an application, we show that for every regular uncountable cardinal \(\kappa\) such that \(\kappa=\kappa^{<\kappa}\), there are \(2^\kappa\) pairwise non-isomorphic quasi-ordered difference fields of cardinality \(\kappa\), but all isomorphic as quasi-ordered fields.
For the entire collection see [Zbl 1372.20003].


03C60 Model-theoretic algebra
12J15 Ordered fields
12L12 Model theory of fields
Full Text: DOI arXiv


[1] N.L. Alling, S. Kuhlmann, On η_α-groups and fields. Order 11, 85-92 (1994) · Zbl 0816.06019 · doi:10.1007/BF01462232
[2] G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, 1948) · Zbl 0033.10103
[3] R. Brown, Automorphisms and isomorphisms of real Henselian fields. Trans. Am. Math. Soc. 307, 675-703 (1988) · Zbl 0662.12026 · doi:10.1090/S0002-9947-1988-0940222-3
[4] R. Cohn, Difference Algebra (Wiley, New-York, 1965) · Zbl 0127.26402
[5] M. Droste, R. Göbel, The automorphism groups of Hahn groups, Ordered Algebraic Structures (Curacao, 1995) (Kluwer Academic, Dordrecht, 1997), pp. 183-215 · Zbl 0873.06013 · doi:10.1007/978-94-011-5640-0_8
[6] A.J. Engler, A. Prestel, Valued Fields. Springer Monographs in Mathematics (Springer, Berlin, 2005) · Zbl 1128.12009
[7] S.M. Fakhruddin, Quasi-ordered fields. J. Pure Appl. Algebra 45, 207-210 (1987) · Zbl 0629.12022 · doi:10.1016/0022-4049(87)90069-7
[8] L. Fuchs, Partially ordered algebraic systems (Pergamon Press, Oxford, 1963) · Zbl 0137.02001
[9] H. Hahn, Über die nichtarchimedischen Grössensystem. Sitzungsber. Kaiserlichen Akad. Wiss. Math. Naturwiss. Kl. (Wien) 116(Abteilung IIa), 601-655 (1907)
[10] G.H. Hardy, Orders of Infinity; The“Infinitärcalcul” of Paul Du Bois-Reymond (Cambridge University Press, Cambridge, 1910)
[11] D. Haskell, D. Macpherson, Cell decompositions of C-minimal structures. Ann. Pure Appl. Logic 66, 113-162 (1994) · Zbl 0790.03039 · doi:10.1016/0168-0072(94)90064-7
[12] H. Hofberger, Automorphismen formal reeller Körper, PhD Thesis, Ludwig-Maximilians-Universität München, 1991 · Zbl 0779.12001
[13] I. Kaplansky, Maximal fields with valuations I. Duke Math. J. 9, 303-321 (1942) · Zbl 0063.03135 · doi:10.1215/S0012-7094-42-00922-0
[14] S. Kuhlmann, Ordered Exponential Fields. Fields Institute Monographs, vol. 12 (American Mathematical Society, Providence, 2000) · Zbl 0989.12003
[15] J.L. Krivine, Anneaux préordonnés. J. Anal. Math. 12, 307-326 (1964) · Zbl 0134.03902 · doi:10.1007/BF02807438
[16] J.B. Kruskal, The theory of well-quasi-ordering: a frequently discovered concept. J. Combinatorial Theory (A) 13, 297-305 (1972) · Zbl 0244.06002 · doi:10.1016/0097-3165(72)90063-5
[17] F.-V. Kuhlmann, S. Kuhlmann, Valuation theory of exponential Hardy fields II: principal parts of germs in the Hardy field of o-minimal exponential expansions of the reals, in Proceedings of the Conference on Ordered Algebraic Structures and Related Topics, ed. by F. Broglia, F. Delon, M. Dickmann, D. Gondard, and V. Powers (2016), AMS Contemporary Mathematics (CONM) (to appear) · Zbl 1437.03131
[18] S. Kuhlmann, S. Shelah, κ-bounded exponential-logarithmic power series fields. Ann. Pure Appl. Logic 136, 284-296 (2005) · Zbl 1079.03024
[19] T.Y. Lam, The theory of ordered fields, in Ring Theory and Algebra III, ed. by B. McDonald. Lecture Notes in Pure and Applied Mathematics, vol. 55 (Dekker, New York, 1980), pp. 1-152 · Zbl 0442.12024
[20] T.Y. Lam, Orderings, valuations and quadratic forms. Regional Conference Series in Mathematics, vol. 52 (American Mathematical Society, Providence, 1983) · Zbl 0516.12001
[21] S. Lang, The theory of real places. Ann. Math. 57, 378-391 (1953) · Zbl 0052.03301 · doi:10.2307/1969865
[22] G. Lehéricy, The differential rank of a valued differential field, Dissertation (in preparation, 2016)
[23] S. Prieß-Crampe, Angeordnete Strukturen. Gruppen, Körper, projektive Ebenen. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 98 (Springer, New York, 1983) · Zbl 0558.51012
[24] A. Prestel, Lectures on Formally Real Fields. Springer Lecture Notes in Mathematics, vol. 1093 (Springer, New York, 1984) · Zbl 0548.12011
[25] J.G. Rosenstein, Linear Orderings. Pure and Applied Mathematics, vol. 98 (Academic Press, New York, 1982) · Zbl 0488.04002
[26] O.F.G. Schilling, Automorphisms of fields of formal power series. Bull. Am. Math. Soc. 50, 892-901 (1944) · Zbl 0061.05706 · doi:10.1090/S0002-9904-1944-08259-1
[27] O.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.