Dudek, Sylwia The Liouville-type theorem for problems with nonstandard growth derived by Caccioppoli-type estimate. (English) Zbl 1439.35108 Monatsh. Math. 192, No. 1, 75-91 (2020). The author considers the nonnegative solution \(u\) to the partial differential inequality \[ -\operatorname{div}{\mathcal A}(x, u, \nabla u) \geq {\mathcal B}(x, u, \nabla u) \] in \(\Omega \subset {\mathbb R}^n\) with \( {\mathcal A}\) and \({\mathcal B}\) differential operators with \(p(x)\)-type growth. The author first proves a Caccioppoli-type inequality for the solution \(u\) and then, as a consequence, a nice Liouville-type theorem under a suitable integral condition. With respect to the known literature, the author reduces the assumptions on the operators \({\mathcal A}\) and \( {\mathcal B}\) and does not restrict the range of \(p(x)\) by the space dimension \(n\), covering, in this way, a quite general family of problems. Reviewer: Vincenzo Vespri (Firenze) Cited in 1 Document MSC: 35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs 35B65 Smoothness and regularity of solutions to PDEs 26D10 Inequalities involving derivatives and differential and integral operators 35J60 Nonlinear elliptic equations 35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian 35R45 Partial differential inequalities and systems of partial differential inequalities Keywords:Caccioppoli inequality; variable exponent Lebesgue space × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Adamowicz, T.; Górka, P., The Liouville theorems for elliptic equations with nonstandard growth, Commun. Pure Appl. Anal., 14, 6, 2377-2392 (2015) · Zbl 1329.35084 · doi:10.3934/cpaa.2015.14.2377 [2] Adamowicz, T.; Hästö, P., Harnack’s inequality and the strong \(p(\cdot )\)-Laplacian, J. Differ. Equ., 250, 3, 1631-1649 (2011) · Zbl 1205.35084 · doi:10.1016/j.jde.2010.10.006 [3] Alkhutov, Y.: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with nonstandard growth condition, Differ. Uravn. 33(12), 1651-1660 (1997), 1726. [Translation in Differential Equations 33 (12) (1997), 1653-1663.] · Zbl 0949.35048 [4] Baalal, A.; Qabil, A., Harnack inequality nad continuity of solutions for quasilinear elliptic equations in Sobolev spaces with variable exponent, Nonlinear Anal. Differ. Equ., 2, 69-81 (2014) · doi:10.12988/nade.2014.31225 [5] Baalal, A., Liouville-type result for quasilinear elliptic problems with variable exponent, Int. J. Pure Appl. Math., 104, 1, 57-68 (2015) · doi:10.12732/ijpam.v104i1.5 [6] Barnaś, S., Existence results for hemivariational inequality involving \(p(x)\)-Laplacian, Opuscula Math., 32, 439-454 (2012) · Zbl 1250.35010 · doi:10.7494/OpMath.2012.32.3.439 [7] Caristi, G.; Mitidieri, E., Some Liouville theorems for quasilinear elliptic inequalities, Doklady Math., 79, 1, 118-124 (2009) · Zbl 1387.35207 · doi:10.1134/S1064562409010360 [8] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 4, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522 [9] D’Ambrosio, L., Hardy type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5, 4, 451-486 (2005) · Zbl 1170.35372 [10] D’Ambrosio, L., Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal. TMA, 70, 8, 2855-2869 (2009) · Zbl 1177.35262 · doi:10.1016/j.na.2008.12.028 [11] D’Ambrosio, L.; Mitidieri, E., A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differ. Equ., 17, 9-10, 935-1000 (2012) · Zbl 1273.35138 [12] D’Ambrosio, L.; Mitidieri, E., A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224, 3, 967-1020 (2010) · Zbl 1206.35265 · doi:10.1016/j.aim.2009.12.017 [13] D’Ambrosio, L.; Mitidieri, E., Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413, 1, 121-138 (2014) · Zbl 1312.35075 · doi:10.1016/j.jmaa.2013.11.052 [14] DiBenedetto, E., Degenerate Parabolic Equations. Universitext (1993), New York: Springer, New York · Zbl 0794.35090 [15] Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M., Lebesgue and Sobolev Spaces with Variable Exponents (2011), Heidelberg: Springer, Heidelberg · Zbl 1222.46002 [16] Dudek, S., Nontrivial solution for nonlinear \(p(x)\)-Laplacian Dirichlet problem with the sign-changing weight, Dyn. Syst. Appl., 24, 67-81 (2015) · Zbl 1328.35055 [17] Dudek, S.; Skrzypczak, I., Liouville theorems for elliptic problems in variable exponent spaces, Commun. Pure Appl. Anal., 16, 2, 513-532 (2017) · Zbl 1358.35038 · doi:10.3934/cpaa.2017026 [18] Fan, X.; Zhao, D., On the generalized Orlicz-Sobolev space \(W^{k, p(x)}(\Omega )\), J. Gansu Educ. Coll., 12, 1, 1-6 (1998) [19] Fan, X.; Zhao, D., On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617 [20] Fan, X., Zhao, Y., Zhang, Q.: A strong maximum principle for \(p(x)\)-Laplace equations. Chin. J. Contemp. Math. 24(3), 277-282 (2003). [Translation of Chinese Ann. Math. Ser. A 24 (4) (2003), 495-500.] · Zbl 1112.35079 [21] Filippucci, R., Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal. TMA, 70, 8, 2903-2916 (2009) · Zbl 1165.35487 · doi:10.1016/j.na.2008.12.018 [22] Fortini, R.; Mugnai, D.; Pucci, P., Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal., 70, 8, 2917-2929 (2009) · Zbl 1169.35314 · doi:10.1016/j.na.2008.12.030 [23] Galakhov, E.; Salieva, O.; Uvarova, L., Nonexistence results for some nonlinear inequalities with functional parameters, Electron. J. Qual. Theory Differ. Equ., 85, 1-11 (2015) · Zbl 1349.35115 · doi:10.14232/ejqtde.2015.1.85 [24] Gwiazda, P.; Świerczewska-Gwiazda, A.; Wróblewska-Kamińska, A., Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33, 2, 125-137 (2010) · Zbl 1180.35427 [25] Harjulehto, P.; Hästö, P.; Latvala, V., Harnack’s inequality for \(p(\cdot )\)-harmonic functions with unbounded exponent \(p\), J. Math. Anal. Appl., 352, 345-359 (2009) · Zbl 1204.46021 · doi:10.1016/j.jmaa.2008.05.090 [26] Harjulehto, P.; Hästö, P.; Lê, U.; Nuortio, M., Overview of differential equations with non-standard growth, Nonlinear Anal., 72, 4551-4574 (2010) · Zbl 1188.35072 · doi:10.1016/j.na.2010.02.033 [27] Harjulehto, P.; Kinnunen, J.; Lukkari, T., Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl. (2007) · Zbl 1161.35020 · doi:10.1155/2007/48348 [28] Heinonen, J., Lectures on Analysis on Metric Spaces. Universitext (2001), New York: Springer, New York · Zbl 0985.46008 [29] Kałamajska, A.; Pietruska-Pałuba, K.; Skrzypczak, I., Nonexistence results for differential inequalities involving \(A\)-Laplacian, Adv. Differ. Equ., 17, 3-4, 307-336 (2012) · Zbl 1260.26019 [30] Kawohl, B.; Kurta, V., A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities, Commun. Pure Appl. Anal., 10, 1747-1762 (2011) · Zbl 1229.35025 · doi:10.3934/cpaa.2011.10.1747 [31] Kovácik, O.; Rákosník, J., On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\), Czechoslovak Math. J., 41, 116, 592-618 (1991) · Zbl 0784.46029 [32] Lindquist, P.: Notes on the \(p\)-Laplace equation. www.math.ntnu.no/ lqvist/p-laplace.pdf · Zbl 0892.93019 [33] Mitidieri, E.; Pokhozhaev, SI, Some generalizations of the Bernstein’s theorem, Differ. Equ., 38, 3, 392-397 (2002) · Zbl 1274.35120 · doi:10.1023/A:1016066010721 [34] Moser, J., On Harnack’s theorem for elliptic differential equations, Commun. Pure Appl. Math., 14, 577-591 (1961) · Zbl 0111.09302 · doi:10.1002/cpa.3160140329 [35] Skrzypczak, I., Hardy-type inequalities derived from \(p\)-harmonic problems, Nonlinear Anal. TMA, 93, 30-50 (2013) · Zbl 1282.26040 · doi:10.1016/j.na.2013.07.006 [36] Rajagopal, K.; Ružička, M., On the modeling of electrorheological materials, Mech. Res. Commun., 23, 401-407 (1996) · Zbl 0890.76007 · doi:10.1016/0093-6413(96)00038-9 [37] Ružička, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000), Berlin: Springer, Berlin · Zbl 0968.76531 [38] Serrin, J., The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, J. Math. Sci. (N. Y.), 179, 1, 174-183 (2011) · Zbl 1291.35084 · doi:10.1007/s10958-011-0588-z [39] Toivanen, O., Harnack’s inequality for general solutions with nonstandard growth, Ann. Acad. Sci. Fenn. Math., 37, 2, 571-577 (2012) · Zbl 1270.49038 · doi:10.5186/aasfm.2012.3736 [40] Wang, LF, Liouville theorem for the variable exponent Laplacian, Chin. J. East China Norm. Univ. Natur. Sci. Ed., 1, 84-93 (2009) · Zbl 1199.53095 [41] Zhikov, VV, On some variational problems, Russ. J. Math. Phys., 5, 1, 105-116 (1998) · Zbl 0917.49006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.