zbMATH — the first resource for mathematics

Quantum fractional revival on graphs. (English) Zbl 1441.05134
Summary: Fractional revival is a quantum transport phenomenon important for entanglement generation in spin networks. This takes place whenever a continuous-time quantum walk maps the characteristic vector of a vertex to a superposition of the characteristic vectors of a subset of vertices containing the initial vertex. A main focus will be on the case when the subset has two vertices. We explore necessary and sufficient spectral conditions for graphs to exhibit fractional revival. This provides a characterization of fractional revival in paths and cycles. Our work builds upon the algebraic machinery developed for related quantum transport phenomena such as state transfer and mixing, and it reveals a fundamental connection between them.

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C72 Fractional graph theory, fuzzy graph theory
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
Full Text: DOI arXiv
[1] Albanese, C.; Christandl, M.; Datta, N.; Ekert, A., Mirror inversion of quantum states in linear registers, Phys. Rev. Lett., 93, Article 230502 pp., (2004)
[2] Bachman, R.; Fredette, E.; Fuller, J.; Landry, M.; Opperman, M.; Tamon, C.; Tollefson, A., Perfect state transfer on quotient graphs, Quantum Inf. Comput., 12, 3-4, 293-313, (2012) · Zbl 1256.81018
[3] Banchi, L.; Compagno, E.; Bose, S., Perfect wave-packet splitting and reconstruction in a one-dimensional lattice, Phys. Rev. A, 91, Article 052323 pp., (2015)
[4] A. Berger, Linear independence of trigonometric numbers, arXiv:1504:06652v1, math.NT.
[5] Bose, S., Quantum communication through an unmodulated spin chain, Phys. Rev. Lett., 91, 20, Article 207901 pp., (2003)
[6] Brouwer, A. E.; Haemers, W. H., Spectra of Graphs, (2012), Springer · Zbl 1231.05001
[7] A. Chan, Complex hadamard matrices, in: Instantaneous Uniform Mixing and Cubes, arXiv:13055811, math.co.
[8] Chen, B.; Song, Z.; Sun, C. P., Fractional revivals of the quantum state in a tight-binding chain, Phys. Rev. A, 75, Article 012113 pp., (2007)
[9] Childs, A., On the relationship between continuous- and discrete-time quantum walk, Comm. Math. Phys., 294, 581-603, (2010) · Zbl 1207.81029
[10] A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D. Spielman, Exponential algorithmic speedup by a quantum walk, in: Proc. 35th ACM Symposium on Theory of Computing, 2003, pp. 59-68. · Zbl 1192.81059
[11] Christandl, M.; Datta, N.; Dorlas, T.; Ekert, A.; Kay, A.; Landahl, A., Perfect state transfer of arbitrary states in quantum spin networks, Phys. Rev. A, 71, Article 032312 pp., (2005)
[12] Christandl, M.; Datta, N.; Ekert, A.; Landahl, A., Perfect state transfer in quantum spin networks, Phys. Rev. Lett., 92, Article 187902 pp., (2004)
[13] Christandl, M.; Vinet, L.; Zhedanov, A., Analytic next-to-nearest-neighbor XX models with perfect state transfer and fractional revival, Phys. Rev. A, 96, 3, Article 032335 pp., (2017)
[14] Dai, L.; Feng, Y. P.; Kwek, L. C., Engineering quantum cloning through maximal entanglement between boundary qubits in an open spin chain, J. Phys. A, 43, Article 035302 pp., (2009) · Zbl 1183.81031
[15] Farhi, E.; Gutmann, S., Quantum computation and decision trees, Phys. Rev. A, 58, 915-928, (1998)
[16] Genest, V.; Vinet, L.; Zhedanov, A., Quantum spin chains with fractional revival, Ann. Physics, 371, 348-367, (2016) · Zbl 1380.82030
[17] Godsil, C., State transfer on graphs, Discrete Math., 312, 123-147, (2012) · Zbl 1232.05123
[18] Godsil, C., When can perfect state transfer occur?, Electron. J. Linear Algebra, 23, 877-890, (2012) · Zbl 1253.05093
[19] Godsil, C.; Kirkland, S.; Severini, S.; Smith, J., Number-theoretic nature of communication in quantum spin chains, Phys. Rev. Lett., 109, Article 050502 pp., (2012)
[20] Godsil, C.; Royle, G., Algebraic Graph Theory, (2001), Springer · Zbl 0968.05002
[21] Hardy, G. H.; Wright, E. M., An Introduction To the Theory of Numbers, (2000), Oxford University Press
[22] Kay, A., Basics of perfect communication through quantum networks, Phys. Rev. A, 84, 2, (2011)
[23] Kay, A., Perfect, efficient state transfer and its application as a constructive tool, Int. J. Quantum Inf., 8, 4, 641-676, (2011) · Zbl 1194.81046
[24] C. Moore, A. Russell, Quantum walks on the hypercube, in: Proc. 6th International Workshop on Randomization and Approximation Techniques, RANDOM 2002, 2002, pp. 164-178. · Zbl 1028.68570
[25] Vinet, L.; Zhedanov, A., Almost perfect state transfer in quantum spin chains, Phys. Rev. A, 86, Article 052319 pp., (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.