×

Nonlinear diffusion equations with nonlinear gradient noise. (English) Zbl 1441.60045

Summary: We prove the existence and uniqueness of entropy solutions for nonlinear diffusion equations with nonlinear conservative gradient noise. As particular applications our results include stochastic porous media equations, as well as the one-dimensional stochastic mean curvature flow in graph form.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35K65 Degenerate parabolic equations
35K59 Quasilinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] V. Barbu, G. Da Prato, and M. Röckner. Stochastic Porous Media Equations, vol. 2163 of Lecture Notes in Mathematics. Springer, [Cham], 2016. · Zbl 1355.60004
[2] V. Barbu and M. Röckner. An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise. J. Eur. Math. Soc. (JEMS) 17, no. 7, (2015), 1789-1815. · Zbl 1327.60122
[3] V. Barbu and M. Röckner. Nonlinear Fokker-Planck equations driven by Gaussian linear multiplicative noise. J. Differential Equations 265, no. 10, (2018), 4993-5030. http://dx.doi.org/10.1016/j.jde.2018.06.026. · Zbl 1403.60051
[4] C. Bauzet, G. Vallet, and P. Wittbold. A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force. J. Hyperbolic Differ. Equ. 12, no. 3, (2015), 501-533. http://dx.doi.org/10.1142/S0219891615500150. · Zbl 1327.35209
[5] K. Dareiotis and M. Gerencsér. On the boundedness of solutions of SPDEs. Stochastic Partial Differential Equations: Analysis and Computations 3, no. 1, (2015), 84-102. http://dx.doi.org/10.1007/s40072-014-0043-5. · Zbl 1310.60092
[6] K. Dareiotis and B. Gess. Supremum estimates for degenerate, quasilinear stochastic partial differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 55, no. 3, (2019), 1765-1796. · Zbl 1433.60052
[7] K. Dareiotis, M. Gerencsér, and B. Gess. Entropy solutions for stochastic porous media equations. J. Differential Equations 266, no. 6, (2019), 3732-3763. http://dx.doi.org/10.1016/j.jde.2018.09.012. · Zbl 1407.35162
[8] A. Debussche, M. Hofmanova, and J. Vovelle. Degenerate parabolic stochastic partial differential equations: quasilinear case. Ann. Probab. 44, no. 3, (2016), 1916-1955. http://dx.doi.org/10.1214/15-AOP1013. · Zbl 1346.60094
[9] N. Dirr, S. Luckhaus, and M. Novaga. A stochastic selection principle in case of fattening for curvature flow. Calc. Var. Partial Differential Equations 13, no. 4, (2001), 405-425. · Zbl 1015.60070
[10] N. Dirr, M. Stamatakis, and J. Zimmer. Entropic and gradient flow formulations for nonlinear diffusion. J. Math. Phys. 57, no. 8, (2016), 081505, 13. · Zbl 1366.82021
[11] A. Es-Sarhir and M.-K. von Renesse. Ergodicity of stochastic curve shortening flow in the plane. SIAM J. Math. Anal. 44, no. 1, (2012), 224-244. · Zbl 1251.47041
[12] F. Flandoli and D. Gatarek. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102, no. 3, (1995), 367-391. http://dx.doi.org/10.1007/BF01192467. · Zbl 0831.60072
[13] B. Fehrman and B. Gess. Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise. arXiv preprint arXiv:1807.04230 (2018). · Zbl 1448.35586
[14] B. Fehrman and B. Gess. Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise. Arch. Ration. Mech. Anal. 233, no. 1, (2019), 249-322. http://dx.doi.org/10.1007/s00205-019-01357-w. · Zbl 1448.35586
[15] J. Feng and D. Nualart. Stochastic scalar conservation laws. J. Funct. Anal. 255, no. 2, (2008), 313-373. http://dx.doi.org/10.1016/j.jfa.2008.02.004. · Zbl 1154.60052
[16] B. Gess. Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263, no. 8, (2012), 2355-2383. · Zbl 1267.60072
[17] P. Gassiat and B. Gess. Regularization by noise for stochastic Hamilton-Jacobi equations. Probab. Theory Related Fields 173, no. 3-4, (2019), 1063-1098. · Zbl 1411.60096
[18] P. Gassiat, B. Gess, P.-L. Lions, and P. E. Souganidis. Speed of propagation for Hamilton-Jacobi equations with multiplicative rough time dependence and convex Hamiltonians. Probab. Theory Related Fields 176, no. 1-2, (2020), 421-448. http://dx.doi.org/10.1007/s00440-019-00921-5. · Zbl 1434.60155
[19] B. Gess and M. Hofmanová. Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE. Ann. Probab. 46, no. 5, (2018), 2495-2544. http://dx.doi.org/10.1214/17-AOP1231. · Zbl 1428.60090
[20] I. Gyöngy and N. Krylov. Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105, no. 2, (1996), 143-158. http://dx.doi.org/10.1007/BF01203833. · Zbl 0847.60038
[21] B. Gess, B. Perthame, and P. E. Souganidis. Semi-discretization for stochastic scalar conservation laws with multiple rough fluxes. SIAM J. Numer. Anal. 54, no. 4, (2016), 2187-2209. · Zbl 1345.60069
[22] B. Gess and M. Röckner. Stochastic variational inequalities and regularity for degenerate stochastic partial differential equations. Trans. Amer. Math. Soc. 369, no. 5, (2017), 3017-3045. http://dx.doi.org/10.1090/tran/6981. · Zbl 1360.60123
[23] B. Gess and P. E. Souganidis. Scalar conservation laws with multiple rough fluxes. Commun. Math. Sci. 13, no. 6, (2015), 1569-1597. · Zbl 1329.60210
[24] B. Gess and P. E. Souganidis. Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws. Comm. Pure Appl. Math. 70, no. 8, (2017), 1562-1597. · Zbl 1370.60105
[25] B. Gess and P. E. Souganidis. Stochastic non-isotropic degenerate parabolic-hyperbolic equations. Stochastic Process. Appl. 127, no. 9, (2017), 2961-3004. · Zbl 1372.60090
[26] B. Gess and S. Smith. Stochastic continuity equations with conservative noise. J. Math. Pures Appl. (9) 128, (2019), 225-263. http://dx.doi.org/10.1016/j.matpur.2019.02.002. · Zbl 1415.60071
[27] B. Gess and J. M. Tölle. Multi-valued, singular stochastic evolution inclusions. J. Math. Pures Appl. (9) 101, no. 6, (2014), 789-827. · Zbl 1295.47042
[28] H. Hoel, K. H. Karlsen, N. H. Risebro, and E. B. Storrøsten. Path-dependent convex conservation laws. J. Differential Equations 265, no. 6, (2018), 2708-2744. http://dx.doi.org/10.1016/j.jde.2018.04.045. · Zbl 1402.35170
[29] M. Hofmanová. Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl. 123, no. 12, (2013), 4294-4336. http://dx.doi.org/10.1016/j.spa.2013.06.015. · Zbl 1291.60130
[30] K. Kawasaki and T. Ohta. Kinetic drumhead model of interface. I. Progress of Theoretical Physics 67, no. 1, (1982), 147-163.
[31] N. V. Krylov and B. L. Rozovskiĭ. Stochastic evolution equations. In Current Problems in Mathematics, Vol. 14 (Russian), 71-147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979.
[32] N. V. Krylov. A relatively short proof of Itô’s formula for SPDEs and its applications. Stoch. Partial Differ. Equ. Anal. Comput. 1, no. 1, (2013), 152-174. · Zbl 1274.60204
[33] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second ed., 1991. http://dx.doi.org/10.1007/978-1-4612-0949-2. · Zbl 0734.60060
[34] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997. · Zbl 0865.60043
[35] J.-M. Lasry and P.-L. Lions. Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, no. 9, (2006), 619-625. · Zbl 1153.91009
[36] J.-M. Lasry and P.-L. Lions. Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343, no. 10, (2006), 679-684. · Zbl 1153.91010
[37] J.-M. Lasry and P.-L. Lions. Mean field games. Jpn. J. Math. 2, no. 1, (2007), 229-260. · Zbl 1156.91321
[38] P.-L. Lions, B. Perthame, and P. E. Souganidis. Scalar conservation laws with rough (stochastic) fluxes. Stoch. Partial Differ. Equ. Anal. Comput. 1, no. 4, (2013), 664-686. · Zbl 1333.60140
[39] P.-L. Lions, B. Perthame, and P. E. Souganidis. Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case. Stoch. Partial Differ. Equ. Anal. Comput. 2, no. 4, (2014), 517-538. · Zbl 1323.35233
[40] W. Liu and M. Röckner. Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Cham, 2015. · Zbl 1361.60002
[41] P.-L. Lions and P. E. Souganidis. Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326, no. 9, (1998), 1085-1092. http://dx.doi.org/10.1016/S0764-4442(98)80067-0. · Zbl 1002.60552
[42] P.-L. Lions and P. E. Souganidis. Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. C. R. Acad. Sci. Paris Sér. I Math. 327, no. 8, (1998), 735-741. http://dx.doi.org/10.1016/S0764-4442(98)80161-4.
[43] I. Munteanu and M. Röckner. Total variation flow perturbed by gradient linear multiplicative noise. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21, no. 1, (2018), 1850003, 28. · Zbl 1430.35281
[44] É. Pardoux. Equations aux dérivées partielles stochastiques non linéaires monotones. PhD thesis (1975). · Zbl 0363.60041
[45] C. Prévôt and M. Röckner. A Concise Course on Stochastic Partial Differential Equations, vol. 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007. · Zbl 1123.60001
[46] P. E. Souganidis. Fully nonlinear first- and second-order stochastic partial differential equations. CIME lecture notes 327, (2016), 1-37.
[47] P. E. Souganidis and N. K. Yip. Uniqueness of motion by mean curvature perturbed by stochastic noise. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, no. 1, (2004), 1-23. · Zbl 1057.35106
[48] J. · Zbl 1405.35268
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.