The frog model on non-amenable trees. (English) Zbl 1441.60084

Summary: We examine an interacting particle system on trees commonly referred to as the frog model. For its initial state, it begins with a single active particle at the root and i.i.d. \(\text{Poiss}(\lambda)\) many inactive particles at each non-root vertex. Active particles perform discrete time simple random walk and in the process activate any inactive particles they encounter. We show that for every non-amenable tree with bounded degree there exists a phase transition from transience to recurrence (with a non-trivial intermediate phase sometimes sandwiched in between) as \(\lambda\) varies.


60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI arXiv Euclid


[1] O. S. M. Alves, F. P. Machado, and S. Y. Popov. The shape theorem for the frog model. Ann. Appl. Probab., 12(2):533-546, 2002. · Zbl 1013.60081
[2] C. Döbler and L. Pfeifroth. Recurrence for the frog model with drift on \(\mathbb{Z}^d \). Electron. Commun. Probab., 19:no. 79, 13, 2014. · Zbl 1325.60155
[3] N. Gantert and S. Müller. The critical branching Markov chain is transient. Markov Process. Related Fields, 12(4):805-814, 2006. · Zbl 1115.60077
[4] N. Gantert and P. Schmidt. Recurrence for the frog model with drift on \(\mathbb{Z} \). Markov Process. Related Fields, 15(1):51-58, 2009. · Zbl 1172.60030
[5] A. Ghosh, S. Noren, and A. Roitershtein. On the range of the transient frog model on \(\mathbb{Z} \). Adv. in Appl. Probab., 49(2):327-343, 2017. · Zbl 1425.60063
[6] C. Hoffman, T. Johnson, and M. Junge. From transience to recurrence with Poisson tree frogs. Ann. Appl. Probab., 26(3):1620-1635, 2016. · Zbl 1345.60116
[7] C. Hoffman, T. Johnson, and M. Junge. Recurrence and transience for the frog model on trees. Ann. Probab., 45(5):2826-2854, 2017. · Zbl 1385.60058
[8] T. M. Liggett. Interacting particle systems, volume 276. Springer Science & Business Media, 2012. · Zbl 1248.82021
[9] R. Lyons and Y. Peres. Probability on trees and networks, volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, 2016. · Zbl 1376.05002
[10] M. Michelen and J. Rosenberg. The frog model on Galton-Watson trees. arXiv preprint arXiv:1910.02367, 2019. · Zbl 1466.60211
[11] S. Y. Popov. Frogs in random environment. J. Statist. Phys., 102(1-2):191-201, 2001. · Zbl 0972.60101
[12] A. F. Ramírez and V. Sidoravicius. Asymptotic behavior of a stochastic combustion growth process. Journal of the European Mathematical Society, 6(3):293-334, 2004. · Zbl 1049.60089
[13] A. Telcs and N. C. Wormald. Branching and tree indexed random walks on fractals. J. Appl. Probab., 36(4):999-1011, 1999. · Zbl 0967.60059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.