Finitary coding for the sub-critical Ising model with finite expected coding volume. (English) Zbl 1441.60088

Summary: It has been shown by J. van den Berg and J. E. Steif [Ann. Probab. 27, No. 3, 1501–1522 (1999; Zbl 0968.60091)] that the sub-critical Ising model on \(\mathbb{Z}^d\) is a finitary factor of a finite-valued i.i.d. process. We strengthen this by showing that the factor map can be made to have finite expected coding volume (in fact, stretched-exponential tails), answering a question of van den Berg and Steif. The result holds at any temperature above the critical temperature. An analogous result holds for Markov random fields satisfying a high-noise assumption and for proper colorings with a large number of colors.


60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
37A60 Dynamical aspects of statistical mechanics


Zbl 0968.60091
Full Text: DOI arXiv Euclid


[1] Scot Adams, Følner independence and the amenable Ising model, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 633-657. · Zbl 0787.58025
[2] Michael Aizenman, Hugo Duminil-Copin, and Vladas Sidoravicius, Random currents and continuity of Ising model’s spontaneous magnetization, Comm. Math. Phys. 334 (2015), no. 2, 719-742. · Zbl 1315.82004 · doi:10.1007/s00220-014-2093-y
[3] Michael Aizenman and Roberto Fernández, On the critical behavior of the magnetization in high-dimensional Ising models, J. Statist. Phys. 44 (1986), no. 3-4, 393-454. · Zbl 0629.60106
[4] Jacob van den Berg and Christian Maes, Disagreement percolation in the study of Markov fields, Ann. Probab. 22 (1994), no. 2, 749-763. · Zbl 0814.60096
[5] Jacob van den Berg and Jeffrey E. Steif, On the existence and nonexistence of finitary codings for a class of random fields, Ann. Probab. 27 (1999), no. 3, 1501-1522. · Zbl 0968.60091 · doi:10.1214/aop/1022677456
[6] Roland L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theor. Probab. Appl. 13 (1968), 197-224.
[7] Robert G. Edwards and Alan D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D (3) 38 (1988), no. 6, 2009-2012.
[8] Hans-Otto Georgii, Olle Häggström, and Christian Maes, The random geometry of equilibrium phases, Phase transitions and critical phenomena, Vol. 18, Phase Transit. Crit. Phenom., vol. 18, Academic Press, San Diego, CA, 2001, pp. 1-142. · Zbl 1063.82002
[9] Geoffrey Grimmett, The random-cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333, Springer-Verlag, Berlin, 2006. · Zbl 1122.60087
[10] Olle Häggström and Jeffrey E. Steif, Propp-Wilson algorithms and finitary codings for high noise Markov random fields, Combin. Probab. Comput. 9 (2000), no. 5, 425-439. · Zbl 0973.60049 · doi:10.1017/S0963548300004363
[11] Matan Harel and Yinon Spinka, Finitary codings for the random-cluster model and other infinite-range monotone models, arXiv:1808.02333 (2018). · Zbl 1498.60387
[12] Nate Harvey, Alexander E. Holroyd, Yuval Peres, and Dan Romik, Universal finitary codes with exponential tails, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 475-496. · Zbl 1148.37004 · doi:10.1112/plms/pdl018
[13] Mark Huber, Exact sampling and approximate counting techniques, STOC ’98 (Dallas, TX), ACM, New York, 1999, pp. 31-40. · Zbl 1028.68218
[14] Mark Huber, Perfect sampling using bounding chains, Ann. Appl. Probab. 14 (2004), no. 2, 734-753. · Zbl 1052.60057 · doi:10.1214/105051604000000080
[15] Michael Keane and Meir Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math. (2) 109 (1979), no. 2, 397-406. · Zbl 0405.28017 · doi:10.2307/1971117
[16] Michael Keane and Meir Smorodinsky, Finitary isomorphisms of irreducible Markov shifts, Israel J. Math. 34 (1979), no. 4, 281-286 (1980). · Zbl 0431.28015 · doi:10.1007/BF02760609
[17] Thomas M. Liggett, Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005, Reprint of the 1985 original. · Zbl 1103.82016
[18] Fabio Martinelli and Enzo Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case, Comm. Math. Phys. 161 (1994), no. 3, 447-486. · Zbl 0793.60110 · doi:10.1007/BF02101929
[19] Donald S. Ornstein, Ergodic theory, randomness, and dynamical systems, Yale University Press, New Haven, Conn.-London, 1974, James K. Whittemore Lectures in Mathematics given at Yale University, Yale Mathematical Monographs, No. 5. · Zbl 0296.28016
[20] Donald S. Ornstein and Benjamin Weiss, \( \mathbf{Z}^d \)-actions and the Ising model, Unpublished, 1977.
[21] James G. Propp and David B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), vol. 9, 1996, pp. 223-252. · Zbl 0859.60067
[22] Jesús Salas and Alan D. Sokal, Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem, J. Statist. Phys. 86 (1997), no. 3-4, 551-579. · Zbl 0935.82010 · doi:10.1007/BF02199113
[23] Robert H. Swendsen and Jian-Sheng Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58 (1987), no. 2, 86.
[24] David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. · Zbl 0722.60001
[25] Chen N. · Zbl 0046.45304 · doi:10.1103/PhysRev.85.808
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.