×

zbMATH — the first resource for mathematics

Advanced separated spatial representations for hardly separable domains. (English) Zbl 1441.74303
Summary: This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The proposed technique achieves a fully separated representation for layered domains with interfaces exhibiting waviness or – more generally – deviating from planar surfaces, parallel to the coordinate plane. This will make possible a simple separated representation, equivalent to others, already analyzed in some of our former works. To prove the potentialities of the proposed approach, two benchmarks will be addressed, one of them involving an efficient space-time separated representation achieved by considering the same rationale.
MSC:
74S99 Numerical and other methods in solid mechanics
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chinesta, F.; Huerta, A.; Rozza, G.; Willcox, K., Model Order Reduction. Chapter in the Encyclopedia of Computational Mechanics (2015), John Wiley & Sons Ltd
[2] Ladevèze, P., The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, C. R. Acad. Sci. Paris, 309, 1095-1099 (1989) · Zbl 0677.73060
[3] Chinesta, F.; Keunings, R.; Leygue, A., (The Proper Generalized Decomposition for Advanced Numerical Simulations. a Primer. The Proper Generalized Decomposition for Advanced Numerical Simulations. a Primer, Springerbriefs in Applied Sciences and Technology (2014), Springer) · Zbl 1287.65001
[4] Cueto, E.; González, D.; Alfaro, I., (Proper Generalized Decompositions: An Introduction to Computer Implementation with Matlab. Proper Generalized Decompositions: An Introduction to Computer Implementation with Matlab, SpringerBriefs in Applied Sciences and Technology (2016), Springer) · Zbl 1333.00026
[5] Pierre, Ladevèze; Passieux, J.-C.; Néron, David, The latin multiscale computational method and the proper generalized decomposition, Comput. Methods Appl. Mech. Engrg., 199, 21-22, 1287-1296 (2010) · Zbl 1227.74111
[6] Azaiez, M.; Ben Belgacem, F.; Casado, J.; Chacon, T.; Murat, F., A new algorithm of proper generalized decomposition for parametric symmetric elliptic problems, SIAM J. Math. Anal., 50, 5, 5426-5445 (2018) · Zbl 1447.35145
[8] Reyes, R.; Codina, R.; Baiges, J.; Idelsohn, S., Reduced order models for thermally coupled low mach flows, Adv. Modeling Simul. Eng. Sci., 5, 1, 28 (2018)
[9] Senecal, J. P.; Ji, W., Characterization of the proper generalized decomposition method for fixed-source diffusion problems, Ann. Nucl. Energy, 126, 68-83 (2019)
[10] Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J. V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.; Huerta, A., PGD-Based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., 20, 31-59 (2013) · Zbl 1354.65100
[11] Courard, A.; Néron, D.; Ladevèze, P.; Ballere, L., Integration of PGD-virtual charts into an engineering design process, Comput. Mech., 57, 637-651 (2016) · Zbl 1382.74104
[12] Ammar, A.; Huerta, A.; Chinesta, F.; Cueto, E.; Leygue, A., Parametric solutions involving geometry: a step towards efficient shape optimization, Comput. Methods Appl. Mech. Engrg., 268C, 178-193 (2014) · Zbl 1295.74080
[13] Gonzalez, D.; Ammar, A.; Chinesta, F.; Cueto, E., Recent advances in the use of separated representations, Internat. J. Numer. Methods Engrg., 81, 5, 637-659 (2010) · Zbl 1183.65168
[14] Ghnatios, Ch.; Xu, G.; Visonneau, M.; Leygue, A.; Chinesta, F.; Cimetiere, A., On the space separated representation when addressing the solution of PDE in complex domains, Discrete Contin. Dyn. Syst., 9, 2, 475-500 (2016) · Zbl 1351.65097
[15] Bognet, B.; Leygue, A.; Chinesta, F.; Poitou, A.; Bordeu, F., Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Comput. Methods Appl. Mech. Engrg., 201, 1-12 (2012) · Zbl 1239.74045
[16] Bognet, B.; Leygue, A.; Chinesta, F., Separated representations of 3D elastic solutions in shell geometries, Adv. Modelling Simul. Eng. Sci., 1, 4 (2014), http://www.amses-journal.com/content/1/1/4
[17] Leygue, A.; Chinesta, F.; Beringhier, M.; Nguyen, T. L.; Grandidier, J. C.; Pasavento, F.; Schrefler, B., Towards a framework for non-linear thermal models in shell domains, Internat. J. Numer. Methods Heat Fluid Flow, 23, 1, 55-73 (2013) · Zbl 1356.74045
[18] Bordeu, F.; Ghnatios, Ch.; Boulze, D.; Carles, B.; Sireude, D.; Leygue, A.; Chinesta, F., Parametric 3D elastic solutions of beams involved in frame structures, Adv. Aircr. Spacecr. Sci., 2, 3, 233-248 (2015)
[19] Gallimard, L.; Vidal, P.; Polit, O., Coupling finite element and reliability analysis through proper generalized decomposition model reduction, Internat. J. Numer. Methods Engrg., 95, 13, 1079-1093 (2013) · Zbl 1352.74353
[20] Vidal, P.; Gallimard, L.; Polit, O., Composite beam finite element based on the proper generalized decomposition, Comput. Struct., 102, 76-86 (2012)
[21] Vidal, P.; Gallimard, L.; Polit, O., Proper generalized decomposition and layer-wise approach for the modeling of composite plate structures, Int. J. Solids Struct., 50, 14-15, 2239-2250 (2013)
[22] Vidal, P.; Gallimard, L.; Polit, O., Explicit solutions for the modeling of laminated composite plates with arbitrary stacking sequences, Compos. B - Eng., 60, 697-706 (2014)
[23] Vidal, P.; Gallimard, L.; Polit, O., Shell finite element based on the proper generalized decomposition for the modeling of cylindrical composite structures, Comput. Struct., 132, 1-11 (2014)
[24] Vidal, P.; Gallimard, L.; Polit, O., Assessment of variable separation for finite element modeling of free edge effect for composite plates, Compos. Struct., 123, 19-29 (2015)
[25] Pruliere, E., 3D Simulation of laminated shell structures using the proper generalized decomposition, Compos. Struct., 117, 373-381 (2014)
[26] Giner, E.; Bognet, B.; Rodenas, J. J.; Leygue, A.; Fuenmayor, J.; Chinesta, F., The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics, Int. J. Solid Struct., 50, 10, 1710-1720 (2013)
[27] Metoui, S.; Pruliere, E.; Ammar, A.; Dau, F.; Iordanoff, I., The proper generalized decomposition for the simulation of delamination using cohesive zone model, Internat. J. Numer. Methods Engrg., 99, 13, 1000-1022 (2014) · Zbl 1352.74484
[28] Chinesta, F.; Leygue, A.; Bognet, B.; Ghnatios, Ch.; Poulhaon, F.; Bordeu, F.; Barasinski, A.; Poitou, A.; Chatel, S.; Maison-Le-Poec, S., First steps towards an advanced simulation of composites manufacturing by automated tape placement, Int. J. Mater. Form., 7, 1, 81-92 (2014)
[29] Ghnatios, Ch.; Chinesta, F.; Binetruy, Ch., The squeeze flow of composite laminates, Int. J. Mater. Form., 8, 73-83 (2015)
[30] Tertrais, H.; Ibanez, R.; Barasinski, A.; Ghnatios, Ch.; Chinesta, F., On the proper generalized decomposition applied to microwave processes involving multilayered components, Math. Comput. Simulation, 156, 347-363 (2019)
[32] Kolda, T.; Bader, B., Tensor decompositions and applications, Soc. Ind. Appl. Math., 51, 455-500 (2009) · Zbl 1173.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.