×

zbMATH — the first resource for mathematics

Birational invariants and decomposition of the diagonal. (English) Zbl 1442.14052
Hochenegger, Andreas (ed.) et al., Birational geometry of hypersurfaces. Lectures given at the “School on Birational Geometry of Hypersurfaces”, Gargnano del Garda, Italy, March 19–23, 2018. Cham: Springer. Lect. Notes Unione Mat. Ital. 26, 3-71 (2019).
Summary: We give a rather detailed account of cohomological and Chow-theoretic methods in the study of the stable version of the Lüroth problem, which ask how to distinguish (stably) rational varieties from general unirational varieties. In particular, we study the notion of Chow or cohomological decomposition of the diagonal, which is a necessary criterion for stable rationality. Having better stability properties than the previously known obstructions under specialization with mildly singular central fibers, it has been very useful in the recent study of rationality questions.
For the entire collection see [Zbl 1430.14003].

MSC:
14E08 Rationality questions in algebraic geometry
14C25 Algebraic cycles
14M20 Rational and unirational varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. Addington, On two rationality conjectures for cubic fourfolds. Math. Res. Lett. 23(1), 1-13 (2016) · Zbl 1375.14134
[2] N. Addington, R. Thomas, Hodge theory and derived categories of cubic fourfolds. Duke Math. J. 163(10), 1885-1927 (2014) · Zbl 1309.14014
[3] M. Artin, D. Mumford, Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc. 25(3), 75-95 (1972) · Zbl 0244.14017
[4] M.F. Atiyah, F. Hirzebruch, Analytic cycles on complex manifolds. Topology 1, 25-45 (1962) · Zbl 0108.36401
[5] A. Auel, J.-L. Colliot-Thélène, R. Parimala, Universal unramified cohomology of cubic fourfolds containing a plane, in Brauer Groups and Obstruction Problems. Progress in Mathematics, vol. 320 (Birkhäuser/Springer, Cham, 2017), pp. 29-55 · Zbl 1426.14005
[6] L. Barbieri-Viale, Cicli di codimensione 2 su varietà unirazionali complesse, in K-Theory (Strasbourg 1992). Astérisque, vol. 226 (Société mathématique de France, Paris, 1994), pp. 13-41
[7] L. Barbieri-Viale, On the Deligne-Beilinson cohomology sheaves. Ann. K-Theory 1(1), 3-17 (2016) · Zbl 1346.14024
[8] A. Beauville, Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. Éc. Norm. Sup. 10, 309-391 (1977) · Zbl 0368.14018
[9] A. Beauville, The Lüroth problem, in Rationality Problems in Algebraic Geometry. Springer Lecture Notes, vol. 2172 (Springer, Berlin, 2016), pp. 1-27 · Zbl 1374.14040
[10] A. Beauville, R. Donagi, La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301, 703-706 (1985) · Zbl 0602.14041
[11] S. Bloch, A. Ogus, Gersten’s conjecture and the homology of schemes. Ann. Sci. Éc. Norm. Supér. IV. Sér. 7, 181-201 (1974) · Zbl 0307.14008
[12] S. Bloch, V. Srinivas, Remarks on correspondences and algebraic cycles. Am. J. Math. 105, 1235-1253 (1983) · Zbl 0525.14003
[13] L. Borisov, The class of the affine line is a zero divisor in the Grothendieck ring. J. Algebraic Geom. 27, 203-209 (2018) · Zbl 1415.14006
[14] H. Clemens, P. Griffiths, The intermediate Jacobian of the cubic threefold. Ann. Math. Second Ser. 95(2), 281-356 (1972) · Zbl 0214.48302
[15] J.-L. Colliot-Thélène, Quelques cas d’annulation du troisième groupe de cohomologie non ramifiée, in Regulators. Contemporary Mathematics, vol. 571 (American Mathematical Society, Providence, 2012), pp. 45-50 · Zbl 1254.14010
[16] J.-L. Colliot-Thélène, M. Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford. Invent. Math. 97(1), 141-158 (1989) · Zbl 0686.14050
[17] J.-L. Colliot-Thélène, A. Pirutka, Hypersurfaces quartiques de dimension 3: non-rationalité stable. Ann. Sci. Éc. Norm. Supér. 49(2), 371-397 (2016) · Zbl 1371.14028
[18] J.-L. Colliot-Thélène, C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière. Duke Math. J. 161(5), 735-801 (2012) · Zbl 1244.14010
[19] A. Conte, J. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves. Math. Ann. 238(1), 79-88 (1978) · Zbl 0373.14006
[20] S. Endrass, On the divisor class group of double solids. Manuscripta Math. 99, 341-358 (1999) · Zbl 0970.14006
[21] W. Fulton, Intersection Theory: Ergebnisse der Math. und ihrer Grenzgebiete 3 Folge, Band 2 (Springer, Berlin, 1984)
[22] S. Galkin, E. Shinder, The Fano variety of lines and rationality problem for a cubic hypersurface (2014). arXiv:1405.5154
[23] T. Graber, J. Harris, J. Starr, Families of rationally connected varieties. J. Am. Math. Soc. 16(1), 57-67 (2003) · Zbl 1092.14063
[24] P. Griffiths, On the periods of certain rational integrals I, II. Ann. Math. 90, 460-495 (1969); ibid. (2) 90 (1969) 496-541 · Zbl 0215.08103
[25] B. Hassett, Special cubic fourfolds. Compos. Math. 120(1), 1-23 (2000) · Zbl 0956.14031
[26] B. Hassett, A. Pirutka, Y. Tschinkel, Stable rationality of quadric surface bundles over surfaces. Acta Math. 220(2), 341-365 (2018) · Zbl 1420.14115
[27] A. Höring, C. Voisin, Anticanonical divisors and curve classes on Fano manifolds. Pure Appl. Math. Quart. 7(4), 1371-1393 (2011) · Zbl 1316.14022
[28] V.A. Iskovskikh, Y. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem. Mat. Sb. (N.S.) 86(128), 140-166 (1971) · Zbl 0222.14009
[29] B. Kahn, Torsion order of smooth projective surfaces. Comment. Math. Helv. 92, 839-857 (2017) · Zbl 1391.14016
[30] M. Kerz, The Gersten conjecture for Milnor K-theory. Invent. Math. 175(1), 1-33 (2009) · Zbl 1188.19002
[31] J. Kollár, Nonrational hypersurfaces. J. Am. Math. Soc. 8(1995), 241-249 (1990)
[32] J. Kollár, Lemma, in Classification of Irregular Varieties, ed. by E. Ballico, F. Catanese, C. Ciliberto. Lecture Notes in Mathematics, vol. 1515 (Springer, Berlin, 1992), p. 134
[33] A. Kuznetsov, Derived categories of cubic fourfolds, in Cohomological and Geometric Approaches to Rationality Problems. Progress in Mathematics, vol. 282 (Birkhäuser, Boston, 2010)
[34] A. Kuznetsov, Scheme of lines on a family of 2-dimensional quadrics: geometry and derived category. Math. Z. 276(3-4), 655-672 (2014) · Zbl 1295.14018
[35] M. Larsen, V. Lunts, Motivic measures and stable birational geometry. Mosc. Math. J. 3(1), 85-95 (2003) · Zbl 1056.14015
[36] D. Markushevich, A. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold. J. Algebraic Geometry 10, 37-62 (2001) · Zbl 0987.14028
[37] T. Matsusaka, On a characterization of a Jacobian variety. Memo. Coll. Sci. Univ. Kyoto. Ser. A. Math. 32, 1-19 (1959) · Zbl 0094.34103
[38] T. Matsusaka, Algebraic deformations of polarized varieties. Nagoya Math. J. 31, 185-245 (1968) · Zbl 0167.49501
[39] A. Merkur’ev, A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR Ser. Mat. 46(5), 1011-1046, 1135-1136 (1982)
[40] G. Mongardi, J. Ottem, Curve classes on irreducible holomorphic symplectic varieties (2018). arXiv:1806.09598
[41] D. Mumford, Rational equivalence of 0-cycles on surfaces. J. Math. Kyoto Univ. 9, 195-204 (1968) · Zbl 0184.46603
[42] J.P. Murre, Reduction of the proof of the non-rationality of a non-singular cubic threefold to a result of Mumford. Compos. Math. 27, 63-82 (1973) · Zbl 0271.14020
[43] J.P. Murre, Applications of algebraic K-theory to the theory of algebraic cycles, in Proceedings Conference on Algebraic Geometry, Sitjes 1983. Lecture Notes in Mathematics, vol. 1124 (Springer, Berlin, 1985), pp. 216-261
[44] A. Roitman, The torsion of the group of zero-cycles modulo rational equivalence. Ann. Math. 111, 553-569 (1980) · Zbl 0504.14006
[45] S. Schreieder, Stably irrational hypersurfaces of small slopes (2018). arXiv:1801.05397 · Zbl 1442.14138
[46] S. Schreieder, On the rationality problem for quadric bundles. Duke Math. J. 168, 187-223 (2019) · Zbl 1409.14030
[47] J.-P. Serre, On the fundamental group of a unirational variety. J. Lond. Math. Soc. 34, 481-484 (1959) · Zbl 0097.36301
[48] C. Soulé, C. Voisin, Torsion cohomology classes and algebraic cycles on complex projective manifolds. Adv. Math. 198(1), 107-127 (2005) · Zbl 1088.14002
[49] T.A. Springer, Sur les formes quadratiques d’indice zéro. C. R. Acad. Sci. Paris 234, 1517-1519 (1952) · Zbl 0046.24303
[50] Z. Tian, R. Zong, One-cycles on rationally connected varieties. Compos. Math. 150(3), 396-408 (2014) · Zbl 1304.14067
[51] B. Totaro, Hypersurfaces that are not stably rational. J. Am. Math. Soc. 29(3), 883-891 (2016) · Zbl 1376.14017
[52] V. Voevodsky, A nilpotence theorem for cycles algebraically equivalent to zero. Int. Math. Res. Not. 4, 187-198 (1995) · Zbl 0861.14006
[53] V. Voevodsky, Motivic cohomology with \(\mathbb{Z}/l\)-coefficients. Ann. Math. 174, 401-438 (2011) · Zbl 1236.14026
[54] C. Voisin, Remarks on zero-cycles of self-products of varieties, in Moduli of Vector Bundles (Proceedings of the Taniguchi Congress on Vector Bundles), ed. by M.E. Decker (1994), pp. 265-285 · Zbl 0912.14003
[55] C. Voisin, Hodge Theory and Complex Algebraic Geometry II. Cambridge Studies in Advanced Mathematics, vol. 77 (Cambridge University Press, Cambridge, 2003) · Zbl 1032.14002
[56] C. Voisin, On integral Hodge classes on uniruled and Calabi-Yau threefolds, in Moduli Spaces and Arithmetic Geometry. Advanced Studies in Pure Mathematics, vol. 45 (2006), pp. 43-73 · Zbl 1118.14011
[57] C. Voisin, Some aspects of the Hodge conjecture. Jpn. J. Math. 2(2), 261-296 (2007) · Zbl 1159.14005
[58] C. Voisin, Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal. J. Algebraic Geom. 22, 141-174 (2013) · Zbl 1259.14006
[59] C. Voisin, Remarks on curve classes on rationally connected varieties. Clay Math. Proc. 18, 591-599 (2013) · Zbl 1317.14111
[60] C. Voisin, Unirational threefolds with no universal codimension 2 cycle. Invent. Math. 201(1), 207-237 (2015) · Zbl 1327.14223
[61] C. · Zbl 1366.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.