×

On Gromov-Witten theory of toric gerbes. (English) Zbl 1448.14055

Summary: Toric gerbes are étale gerbes over toric Deligne-Mumford stacks which are constructed out of suitably chosen toric data. In this paper we study the genus 0 Gromov-Witten theory of toric gerbes. Our main result equates the genus 0 Gromov-Witten theory of a toric gerbe with a suitable twist of the genus 0 Gromov-Witten theory of a disjoint union of several copies of the base. Our result can be interpreted in the context of the decomposition conjecture in physics. The main tool used in this paper is the calculation of Gromov-Witten theory of toric Deligne-Mumford stacks by Coates-Corti-Iritani-Tseng.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14A20 Generalizations (algebraic spaces, stacks)
PDFBibTeX XMLCite
Full Text: Link

References:

[1] D. Abramovich, T. Graber and A. Vistoli, Gromov-Witten theory of Deligne-Mumford stacks,Amer. J. Math.130 (2008), no. 5, 1337-1398, math.AG/0603151. · Zbl 1193.14070
[2] D. Abramovich, T. Graber and A. Vistoli, Algebraic orbifold quantum product, inOrbifolds in mathematics and physics (Madison,WI,2001), 1-24,Contem. Math.310, Amer. Math. Soc., 2002, math.AG/0112004. · Zbl 1067.14055
[3] E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of product stacks,Comm. Anal. Geom.24 (2016), no. 2, 223-277, arXiv:0905.2258. · Zbl 1356.14047
[4] E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of root gerbes, I: structure of genus 0 moduli spaces,J. Differential Geom.99 (2015), no. 1, 1-45, arXiv:0907.2087. · Zbl 1326.14130
[5] E. Andreini, Y. Jiang and H.-H. Tseng, Gromov-Witten theory of banded gerbes over schemes, arXiv:1101.5996.
[6] L. Borisov, L. Chen and G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks,J. Amer. Math. Soc. 18 (2005), no.1, 193-215. · Zbl 1178.14057
[7] W. Chen and Y. Ruan, A new cohomology theory for orbifolds,Comm. Math. Phys.248 (2004), no. 1, 1-31. · Zbl 1063.53091
[8] W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, inOrbifolds in mathematics and physics (Madison, WI, 2001), 25-85,Contem. Math.310, Amer. Math. Soc., 2002. math.AG/0103156. · Zbl 1091.53058
[9] T. Coates, A. Corti, H. Iritari and H.-H. Tseng, Computing genus-zero twisted GromovWitten invariants,Duke Math. J., 147, No. 3 (2009), 377-438, arXiv:math/0702234. · Zbl 1176.14009
[10] T. Coates, A. Corti, H. Iritari and H.-H. Tseng, A mirror theorem for toric stacks,Comp. Math.151 (2015) 1878-1912. · Zbl 1330.14093
[11] T. Coates, A. Corti, Y.-P. Lee and H.-H. Tseng, The quantum orbifold cohomology of weighted projective spaces,Acta Math., 202, No. 2 (2009), 139-193, arXiv:math/0608481. · Zbl 1213.53106
[12] T. Coates, and A. Givental, Quantum Riemann-Roch, Lefschetz and Serre,Ann. of Math. (2) 165 (2007), no. 1, 15-53. · Zbl 1189.14063
[13] T. Coates, H. Iritari and H.-H. Tseng, Wall-Crossings in Toric Gromov-Witten Theory I: Crepant Examples,Geom. Topol.13 (2009), 2675-2744, arXiv:math.AG/0611550. · Zbl 1184.53086
[14] B. Fantechi, E. Mann and P. Nironi, Smooth toric DM stacks,J. Reine Angew. Math.648 (2010), 201-244, arXiv:0708.1254. · Zbl 1211.14009
[15] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians,Mosc. Math. J.1(2001), no. 4, 551-568. · Zbl 1008.53072
[16] A. Givental, Symplectic geometry of Frobenius structures,Frobenius manifolds, 91-112, Aspects Math., E36, Vieweg, Wiesbaden, 2004, math.AG/0305409. · Zbl 1075.53091
[17] J. Giraud, Cohomologie non ab´elienne, Springer-Verlag Berlin 1971. · Zbl 0226.14011
[18] S. Hellerman, A. Henriques, Tony Pantev and Eric Sharpe, Cluster decomposition,Tduality, and gerby CFT’s,Adv. Theor. Math. Phys.11 (2007), no. 5, 751-818, arXiv:hepth/0606034. · Zbl 1156.81039
[19] Y. Jiang, The orbifold cohomology of simplicial toric stack bundles,Illinois J. Math., 52, No.2 (2008), 493-514, math.AG/0504563. · Zbl 1231.14002
[20] Y. Jiang and H.-H. Tseng, The integral (orbifold) Chow ring of toric Deligne-Mumford stacks,Math. Z., 264, No. 1 (2010), 225-248, arXiv:0707:2972. · Zbl 1214.14006
[21] P. Johnson, Equivariant Gromov-Witten theory of one dimensional stacks,Comm. Math. Phys.(2014), 327, no. 2, 333-386. · Zbl 1325.14072
[22] X. Tang and H.-H. Tseng, Duality theorems of ´etale gerbes on orbifolds,Adv. Math.250 (2014), 496-569, arXiv:1004.1376. · Zbl 1300.14058
[23] X. Tang and H.-H. Tseng, A quantum Leray-Hirsch theorem for banded gerbes, arXiv:1602.03564.
[24] H.-H. Tseng, Orbifold Quantum Riemann-Roch, Lefschetz and Serre,Geom. Topol.14 (2010) 1-81 · Zbl 1178.14058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.