Some characterizations of generalized null Mannheim curves in semi-Euclidean space. (English) Zbl 1448.53013

Summary: We investigate Cartan framed generalized null Mannheim curves in the four-dimensional semi-Euclidean space of index two. We construct the Cartan (or Frenet) frames and curvature functions of generalized Mannheim mate curve with the help of curvatures and Cartan frames of generalized null Mannheim curve.


53A35 Non-Euclidean differential geometry
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53B25 Local submanifolds
Full Text: DOI Euclid


[1] Akyi˘git M., Ersoy S., Özgür I. and Tosun M.,Generalized Timelike Mannheim Curves in Minkowski Space-Time, Math. Probl. Eng. (2011) 539378, 9pp. · Zbl 1216.53015
[2] Bonnor W.,Null Curves in a Minkowski Space-Time, Tensor20(1969) 229- 242. · Zbl 0167.20001
[3] Bonnor W.,Curves with Null Normals in Minkowski Space-Time, In: A Random Walk in Relativity and Cosmology, Wiley Easten Limited, Canada 1985. · Zbl 0618.53020
[4] Castro I., Castro-Infantes I., and Castro-Infantes J.,Curves in the LorentzMinkowski Plane:Elasticae, Catenaries and Grim-Reapers, Open Math16 (2018) 747-766. · Zbl 1426.53019
[5] Choi J., Kang T. and Kim Y.,Mannheim Curves in 3-Dimensional Space Forms, Bull. Korean Math. Soc.50(2013) 1099-1108. · Zbl 1284.53004
[6] Duggal K. and Jin D.,Null Curves and Hypersurfaces of Semi-Riemann Manifolds, World Scientific, Singapore 2007. · Zbl 1144.53002
[7] Duggal K. and Jin D.,Geometry of Null Curves, Math. J. Toyama Univ.22 (1999) 95-120. · Zbl 0956.53015
[8] Eisenhart L.,A Traise on the Differential Geometry of Curves and Surfaces, Dover, New York 1960. · Zbl 0090.37803
[9] Ersoy S., Tosun M. and Yorozu S.,Generalized Mannheim Curves in Minkowski Space-TimeE41, Hokkaido Math. J.41(2012) 441-461. · Zbl 1251.53011
[10] Grbovi´c M., ˙Ilarslan K. and Nešovi´c E.,On Null and Pseudo Null Mannheim Curves in Minkowski 3-Space, J. Geom.105(2014) 177-183. · Zbl 1297.53016
[11] Grbovi´c M. and Nešovi´c E.,On Generalized Partially Null Mannheim Curves in Minkowski Space-Time, Novi Sad J. Math.46(2014) 159-170. · Zbl 1474.53275
[12] Grbovi´c M., ˙Ilarslan K. and Nešovi´c E.,On Generalized Null Mannheim Curves in Minkowski Space-Time, Publ. Inst. Math. Beograd (N.S.)99(2016) 77-98. · Zbl 1474.53274
[13] ˙Ilarslan K. and Nešovi´c E.,Spacelike and Timelike Normal Curves in Minkowski Space-Time, Publ. Inst. Math. Beograd (N.S.)85(2009) 111-118. · Zbl 1289.53135
[14] ˙Ilarslan K., Uçum A. and Nešovi´c E.,On Generalized Spacelike Mannheim Curves in Minkowski Space-Time, Proc. Natl. Acad. Sci. India A86(2016) 249-258. · Zbl 1381.53132
[15] Kuhnel W.,Differential Geometry:Curves-Surfaces-Manifolds, AMS, Rhode Island 2002. · Zbl 1009.53002
[16] Liu H. and Wang F.,Mannheim Partner Curves in 3-Space, J. Geom.88 (2008) 120-126. · Zbl 1138.53007
[17] Matsuda H. and Yorozu S.,On Generalized Mannheim Curves in Euclidean 4-Space, Nihonkai Math. J.20(2009) 33-56. · Zbl 1184.53004
[18] O’Neill B.,Semi Riemann Geometry with Applications to Relativity,Academic Press, New York 1983. · Zbl 0531.53051
[19] Özkaldı S., ˙Ilarslan K. and Yaylı Y.,On Mannheim Partner Curves in Dual Lorentzian Space, Hacet. J. Math. Stat.40(2011) 649-661. · Zbl 1243.53010
[20] Özkaldı S., ˙Ilarslan K. and Yaylı Y.,On Mannheim Partner Curve in Dual Space, An. ¸Stiin¸t. Univ. Ovidius Constan¸ta Ser. Mat.17(2009) 131-142. · Zbl 1199.53001
[21] Pei D., Kong L., Sun J. and Wang Q.,Singularities of Lightlike Hypersurface in Semi-Euclidean 4-Space with Index 2, Sci. China Math.53(2010) 3243- 3254. · Zbl 1223.58032
[22] Petrovic T., ˙Ilarslan K. and Nešovi´c E.,On Partially Null and Pseudo Null Curves in Semi-Euclidean SpaceR42, J. Geom.84(2005) 106-116. · Zbl 1092.53013
[23] Sakaki M.,Null Cartan Curves inR42, Toyama Math. J.32(2009) 31-39. · Zbl 1216.53026
[24] Uçum A., Nešovi´c E. and ˙Ilarslan K.,On Generalized Timelike Mannheim Curves in Minkowski Space-Time, JDSGT13(2015) 71-94. · Zbl 1499.53304
[25] Uçum A., ˙Ilarslan K. and Mladenov I.,On Some Special Curves in LorentzMinkowski Plane, Surveys Math. & Appl.15(2020) 459-470. · Zbl 1478.53014
[26] Walrave J.,Curves and Surfaces in Minkowski Space-Time, PhD Thesis Katholieke Universiteit, Leuven 1995.
[27] Reartes W.,Path Integral Quantization of the Sphere, In: New Advances in Celestial and Hamiltonian Systems, Kluwer Academic, New York 2004, pp 225-237.
[28] Schulman L.,Techniques and Applications of Path Integration, Dover, New York 2005. · Zbl 1141.28009
[29] Wolf J.,Spaces of Constant Curvature,6thEdn, AMS Chelsea Publishing, Providence 2011. · Zbl 1216.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.