zbMATH — the first resource for mathematics

Factoriality, Connes’ type III invariants and fullness of amalgamated free product von Neumann algebras. (English) Zbl 1452.46046
Summary: We investigate factoriality, Connes’ type III invariants and fullness of arbitrary amalgamated free product von Neumann algebras using Popa’s deformation/rigidity theory. Among other things, we generalize many previous structural results on amalgamated free product von Neumann algebras and we obtain new examples of full amalgamated free product factors for which we can explicitely compute Connes’ type III invariants.

46L10 General theory of von Neumann algebras
46L09 Free products of \(C^*\)-algebras
46L36 Classification of factors
46L55 Noncommutative dynamical systems
37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
37A40 Nonsingular (and infinite-measure preserving) transformations
Full Text: DOI arXiv
[1] Ando, H. and Haagerup, U.. Ultraproducts of von Neumann algebras. J. Funct. Anal.266 (2014), 6842-6913. · Zbl 1305.46049
[2] Boutonnet, R. and Houdayer, C.. Amenable absorption in amalgamated free product von Neumann algebras. Kyoto J. Math. 58 (2018), 583-593. · Zbl 1406.46045
[3] Boutonnet, R., Houdayer, C. and Raum, S.. Amalgamated free product type III factors with at most one Cartan subalgebra. Compos. Math.150 (2014), 143-174. · Zbl 1308.46067
[4] Boutonnet, R., Houdayer, C. and Vaes, S.. Strong solidity of free Araki-Woods factors. Amer. J. Math. 140 (2018), 1231-1252. · Zbl 1458.46050
[5] Connes, A.. Une classification des facteurs de type III. Ann. Sci. École Norm. Sup.6 (1973), 133-252. · Zbl 0274.46050
[6] Connes, A.. Almost periodic states and factors of type III_1. J. Funct. Anal.16 (1974), 415-445. · Zbl 0302.46050
[7] Connes, A.. Outer conjugacy classes of automorphisms of factors. Ann. Sci. École Norm. Sup.8 (1975), 383-419. · Zbl 0342.46052
[8] Connes, A.. Classification of injective factors. Cases II_1, II_∞, III_λ, λ ≠ 1. Ann. Math.74 (1976), 73-115.
[9] Connes, A.. On the spatial theory of von Neumann algebras. J. Funct. Anal.35 (1980), 153-164. · Zbl 0443.46042
[10] Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I and II. Trans. Amer. Math. Soc.234 (1977), 289-324, 325-359. · Zbl 0369.22010
[11] Gaboriau, D.. Coût des relations d’équivalence et des groupes. Invent. Math.139 (2000), 41-98. · Zbl 0939.28012
[12] Haagerup, U.. The standard form of von Neumann algebras. Math. Scand.37 (1975), 271-283. · Zbl 0304.46044
[13] Haagerup, U.. Operator valued weights in von Neumann algebras, I. J. Funct. Anal.32 (1979), 175-206. · Zbl 0426.46046
[14] Haagerup, U.. Operator valued weights in von Neumann algebras, II. J. Funct. Anal.33 (1979), 339-361. · Zbl 0426.46047
[15] Houdayer, C. and Isono, Y.. Bi-exact groups, strongly ergodic actions and group measure space type III factors with no central sequence. Comm. Math. Phys.348 (2016), 991-1015. · Zbl 1367.46049
[16] Houdayer, C. and Isono, Y.. Unique prime factorization and bicentralizer problem for a class of type III factors. Adv. Math.305 (2017), 402-455. · Zbl 1371.46050
[17] Houdayer, C. and Ueda, Y.. Asymptotic structure of free product von Neumann algebras. Math. Proc. Cambridge Philos. Soc.161 (2016), 489-516. · Zbl 1379.46047
[18] Houdayer, C. and Ueda, Y.. Rigidity of free product von Neumann algebras. Compos. Math.152 (2016), 2461-2492. · Zbl 1379.46046
[19] Houdayer, C. and Vaes, S.. Type III factors with unique Cartan decomposition. J. Math. Pures Appl.100 (2013), 564-590. · Zbl 1291.46052
[20] Houdayer, C., Marrakchi, A. and Verraedt, P.. Fullness and Connes’ τ invariant of type III tensor product factors. J. Math. Pures Appl. 121 (2019), 113-134. · Zbl 1417.46042
[21] Houdayer, C., Marrakchi, A. and Verraedt, P.. Strongly ergodic equivalence relations: spectral gap and type III invariants. To appear in Ergodic Theory Dynam. Systems. arXiv:1704.07326. · Zbl 1417.37047
[22] Houdayer, C., Shlyakhtenko, D. and Vaes, S.. Classification of a family of non almost periodic free Araki-Woods factors. To appear in J. Eur. Math. Soc. arXiv:1605.06057. · Zbl 1434.46037
[23] Ioana, A.. Cartan subalgebras of amalgamated free product II_1 factors. With an appendix joint with Stefaan Vaes. Ann. Sci. École Norm. Sup.48 (2015), 71-130. · Zbl 1351.46058
[24] Ioana, A., Peterson, J. and Popa, S.. Amalgamated free products of w-rigid factors and calculation of their symmetry groups. Acta Math.200 (2008), 85-153. · Zbl 1149.46047
[25] Isono, Y.. Unique prime factorization for infinite tensor product factors. arXiv:1712.00925. · Zbl 1418.46027
[26] Jones, V. F. R.. Index for subfactors. Invent. Math.72 (1983), 1-25. · Zbl 0508.46040
[27] Jones, V. F. R. and Schmidt, K.. Asymptotically invariant sequences and approximate finiteness. Amer. J. Math.109 (1987), 91-114. · Zbl 0638.28014
[28] Kadison, R. V.. Diagonalizing matrices. Amer. J. Math.106 (1984), 1451-1468. · Zbl 0585.46048
[29] Kosaki, H.. Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal.66 (1986), 123-140. · Zbl 0607.46034
[30] Marrakchi, A.. Spectral gap characterization of full type III factors. To appear in J. Reine Angew. Math. arXiv:1605.09613. · Zbl 1433.46040
[31] Masuda, T. and Tomatsu, R.. Classification of actions of discrete Kac algebras on injective factors. Mem. Amer. Math. Soc.245 (2017), no. 1160, ix+118 pp. · Zbl 1376.46052
[32] Mcduff, D.. Central sequences and the hyperfinite factor. Proc. London Math. Soc.21 (1970), 443-461. · Zbl 0204.14902
[33] Murray, F. and Von Neumann, J.. Rings of operators. IV. Ann. Math.44 (1943), 716-808. · Zbl 0060.26903
[34] Ocneanu, A.. Actions of discrete amenable groups on von Neumann algebras. Lecture Notes in Mathematics, 1138. Springer-Verlag, Berlin, 1985. iv+115 pp. · Zbl 0608.46035
[35] Ozawa, N. and Popa, S.. On a class of II_1 factors with at most one Cartan subalgebra. Ann. Math.172 (2010), 713-749. · Zbl 1201.46054
[36] Peterson, J.. L^2-rigidity in von Neumann algebras. Invent. Math.175 (2009), 417-433. · Zbl 1170.46053
[37] Pimsner, M. and Popa, S.. Entropy and index for subfactors. Ann. Sci. École Norm. Sup.19 (1986), 57-106. · Zbl 0646.46057
[38] Popa, S.. On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors. Invent. Math.65 (1981), 269-281. · Zbl 0481.46028
[39] Popa, S.. Maximal injective subalgebras in factors associated with free groups. Adv. Math.50 (1983), 27-48. · Zbl 0545.46041
[40] Popa, S.. Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math.111 (1993), 375-405. · Zbl 0787.46047
[41] Popa, S.. Classification of subfactors and their endomorphisms. CBMS Regional Conference Series in Mathematics, 86. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. x+110 pp. · Zbl 0865.46044
[42] Popa, S.. On a class of type II_1 factors with Betti numbers invariants. Ann. Math.163 (2006), 809-899. · Zbl 1120.46045
[43] Popa, S.. Strong rigidity of II_1 factors arising from malleable actions of w-rigid groups I. Invent. Math.165 (2006), 369-408. · Zbl 1120.46043
[44] Popa, S.. On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc.21 (2008), 981-1000. · Zbl 1222.46048
[45] Takesaki, M.. Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003. xxii+518 pp.
[46] Ueda, Y.. Amalgamated free products over Cartan subalgebra. Pacific J. Math.191 (1999), 359-392. · Zbl 1030.46085
[47] Ueda, Y.. Fullness, Connes’ χ-groups, and ultra-products of amalgamated free products over Cartan subalgebras. Trans. Amer. Math. Soc.355 (2003), 349-371. · Zbl 1028.46097
[48] Ueda, Y.. Factoriality, type classification and fullness for free product von Neumann algebras. Adv. Math.228 (2011), 2647-2671. · Zbl 1252.46059
[49] Ueda, Y.. On type III_1 factors arising as free products. Math. Res. Lett.18 (2011), 909-920. · Zbl 1243.46053
[50] Ueda, Y.. Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting. J. London Math. Soc.88 (2013), 25-48. · Zbl 1285.46048
[51] Voiculescu, D.-V.. Symmetries of some reduced free product C*-algebras. Operator algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics 1132. Springer-Verlag, (1985), 556-588.
[52] Voiculescu, D.-V., Dykema, K.J. and Nica, A.. Free random variables. CRM Monograph Series 1. (Providence, RI: American Mathematical Society, 1992). · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.