Viola, Carlo; Zudilin, Wadim Linear independence of dilogarithmic values. (English) Zbl 1454.11131 J. Reine Angew. Math. 736, 193-223 (2018). Summary: We establish the linear independence over \(\mathbb{Q}\), in both qualitative and quantitative forms, of the four numbers 1, \(\operatorname{Li}_{1}(1/z)=-\log(1-1/z)\), \(\operatorname{Li}_{2}(1/z)\) and \(\operatorname{Li}_{2}(1/(1-z))\), for all integers \(z\geq9\) or \(z\geq8\) and for rationals \(z=s/r\) or \(z=1-s/r\) with \(1<r<s\), where \(s\) is large in comparison with \(r\). Cited in 5 Documents MSC: 11J72 Irrationality; linear independence over a field 11J82 Measures of irrationality and of transcendence Keywords:dilogarithmic values; Padé-type approximation; saddle point method PDF BibTeX XML Cite \textit{C. Viola} and \textit{W. Zudilin}, J. Reine Angew. Math. 736, 193--223 (2018; Zbl 1454.11131) Full Text: DOI Link References: [1] [1] D. V. Chudnovsky and G. V. Chudnovsky, Generalized hypergeometric functions. Classification of identities and explicit rational approximations, Algebraic methods and \(q\)-special functions (Montréal 1996), CRM Proc. Lecture Notes 22, American Mathematical Society, Providence (1999), 59-91. ChudnovskyD. V.ChudnovskyG. V.Generalized hypergeometric functions. Classification of identities and explicit rational approximationsAlgebraic methods and \(q\)-special functionsMontréal 1996CRM Proc. Lecture Notes 22American Mathematical SocietyProvidence19995991 · Zbl 0943.33004 [2] [2] M. Hata, Rational approximations to π and some other numbers, Acta Arith. 63 (1993), no. 4, 335-349. HataM.Rational approximations to π and some other numbersActa Arith.6319934335349 · Zbl 0776.11033 [3] [3] M. Hata, Rational approximations to the dilogarithm, Trans. Amer. Math. Soc. 336 (1993), no. 1, 363-387. HataM.Rational approximations to the dilogarithmTrans. Amer. Math. Soc.33619931363387 · Zbl 0768.11022 [4] [4] M. Hata, The irrationality of log(1+1/q)log(1-1/q)\log(1+1/q)\log(1-1/q), Trans. Amer. Math. Soc. 350 (1998), no. 6, 2311-2327. HataM.The irrationality of log(1+1/q)log(1-1/q)\log(1+1/q)\log(1-1/q)Trans. Amer. Math. Soc.3501998623112327 · Zbl 0918.11040 [5] [5] M. Hata, ℂ2\mathbb{C}^2-saddle method and Beukers’ integral, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4557-4583. HataM.ℂ2\mathbb{C}^2-saddle method and Beukers’ integralTrans. Amer. Math. Soc.35220001045574583 · Zbl 0996.11048 [6] [6] R. Marcovecchio, Multiple Legendre polynomials in diophantine approximation, Int. J. Number Theory 10 (2014), no. 7, 1829-1855. MarcovecchioR.Multiple Legendre polynomials in diophantine approximationInt. J. Number Theory102014718291855 · Zbl 1315.11064 [7] [7] M.-A. Miladi, Récurrences linéaires et approximations simultanées de type-Padé: applications à l’arithmétique, Thèse, Université des Sciences et Technologies de Lille, 2001. MiladiM.-A.Récurrences linéaires et approximations simultanées de type-Padé: applications à l’arithmétiqueThèseUniversité des Sciences et Technologies de Lille2001 [8] [8] G. Rhin and C. Viola, On a permutation group related to ζ(2)\zeta(2), Acta Arith. 77 (1996), no. 1, 23-56. RhinG.ViolaC.On a permutation group related to ζ(2)\zeta(2)Acta Arith.77199612356 · Zbl 0864.11037 [9] [9] G. Rhin and C. Viola, The permutation group method for the dilogarithm, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2005), no. 3, 389-437. RhinG.ViolaC.The permutation group method for the dilogarithmAnn. Scuola Norm. Sup. Pisa Cl. Sci. (5)420053389437 · Zbl 1170.11316 [10] [10] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identities, Invent. Math. 108 (1992), no. 3, 575-633. WilfH. S.ZeilbergerD.An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identitiesInvent. Math.10819923575633 · Zbl 0739.05007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.