×

Tensor structure for Nori motives. (English) Zbl 1454.14062

Summary: We construct a tensor product on Freyd’s universal abelian category \(\operatorname{Ab}(C)\) attached to an additive tensor category or a \(\otimes \)-quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives.

MSC:

14F99 (Co)homology theory in algebraic geometry
18E10 Abelian categories, Grothendieck categories
18G80 Derived categories, triangulated categories
03C60 Model-theoretic algebra
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] 10.1016/j.aim.2012.10.004 · Zbl 1277.14013 · doi:10.1016/j.aim.2012.10.004
[2] 10.1017/CBO9780511614309 · doi:10.1017/CBO9780511614309
[3] 10.1017/S1474748009000127 · Zbl 1202.14018 · doi:10.1017/S1474748009000127
[4] 10.1017/s0305004118000725 · Zbl 1469.18028 · doi:10.1017/s0305004118000725
[5] 10.1016/j.jpaa.2016.12.017 · Zbl 1375.14019 · doi:10.1016/j.jpaa.2016.12.017
[6] 10.4171/RSMUP/139-8 · Zbl 1395.18012 · doi:10.4171/RSMUP/139-8
[7] 10.1016/j.jpaa.2019.106267 · Zbl 1439.14077 · doi:10.1016/j.jpaa.2019.106267
[8] 10.1007/s00029-018-0425-z · Zbl 1487.18003 · doi:10.1007/s00029-018-0425-z
[9] 10.1017/CBO9780511525858 · doi:10.1017/CBO9780511525858
[10] 10.1016/0021-8693(69)90102-1 · Zbl 0165.32902 · doi:10.1016/0021-8693(69)90102-1
[11] 10.1007/BFb0060438 · Zbl 0203.31402 · doi:10.1007/BFb0060438
[12] 10.1007/978-3-540-38955-2_4 · doi:10.1007/978-3-540-38955-2_4
[13] 10.1007/978-3-642-99902-4_4 · doi:10.1007/978-3-642-99902-4_4
[14] 10.1007/BF02566271 · Zbl 0447.16023 · doi:10.1007/BF02566271
[15] ; Huber, J. Algebraic Geom., 9, 755 (2000) · Zbl 0994.14014
[16] 10.1007/978-3-319-50926-6 · Zbl 1369.14001 · doi:10.1007/978-3-319-50926-6
[17] 10.1112/S0010437X15007812 · Zbl 1357.14027 · doi:10.1112/S0010437X15007812
[18] 10.4310/MRL.2017.v24.n4.a8 · Zbl 1400.14020 · doi:10.4310/MRL.2017.v24.n4.a8
[19] 10.1007/s002229900022 · Zbl 0937.18013 · doi:10.1007/s002229900022
[20] 10.1090/surv/057 · doi:10.1090/surv/057
[21] ; Mac Lane, Homology. Grundlehren der Math. Wissenschaften, 114 (1963) · Zbl 0133.26502
[22] 10.1515/9781400837212 · Zbl 0974.18008 · doi:10.1515/9781400837212
[23] 10.1090/S0065-9266-2010-00593-3 · Zbl 1229.03034 · doi:10.1090/S0065-9266-2010-00593-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.