## A hypergeometric version of the modularity of rigid Calabi-Yau manifolds.(English)Zbl 1456.11073

This paper considers the fourteen one-parameter families of Calabi-Yau threefolds whose periods are expressed in terms of hypergeometric functions. For these fourteen families, periods are solutions of hypergeometric equations with parameter $$(r, 1-r, t, 1-t)$$, where \begin{multline*} (r,t)=\Big(\frac{1}{2},\frac{1}{2}\Big),\Big(\frac{1}{2},\frac{1}{3}\Big),\Big(\frac{1}{2},\frac{1}{4}\Big), \Big(\frac{1}{2},\frac{1}{6}\Big),\Big(\frac{1}{3}\Big),\Big(\frac{1}{3},\frac{1}{4}\Big),\Big(\frac{1}{3},\frac{1}{6}\Big),\\ \Big(\frac{1}{4},\frac{1}{4}\Big),\Big(\frac{1}{4},\frac{1}{6}\Big),\Big(\frac{1}{6},\frac{1}{6}\Big),\Big(\frac{1}{5},\frac{2}{5}\Big), \Big(\frac{1}{8},\frac{3}{8}\Big),\Big(\frac{1}{10},\frac{3}{10}\Big),\Big(\frac{1}{12},\frac{5}{12}\Big). \end{multline*} At a conifold point, any of these Calabi-Yau threefolds becomes rigid, and the $$p$$-th coefficient $$a(p)$$ of the corresponding modular form of weight $$4$$ can be recovered from the truncated partial sums of the corresponding hypergeometric series modulo a higher power of $$p$$, where $$p$$ is any good prime $$>5$$.
This paper discusses relationships between the critical values of the $$L$$-series of the modular form and the values of a related basis of solutions to the hypergeometric differential equation. It is numerically observed that the critical $$L$$-values are $$\mathbb{Q}$$-proportional to the hypergeometric values $$F_1(1), F_2(1), F_3(1)$$, where $$F_j(z)$$ are solutions of the hypergeometric equation for the hypergeometric function $$F_0(z)=_4F_3(z)$$ with parameters $$(r, 1-r, t, 1-t)$$. This confirms the prediction of Golyshev concerning gamma structures [V. Golyshev and A. Mellit, J. Geom. Phys. 78, 12–18 (2014; Zbl 1284.33001)].

### MSC:

 11F33 Congruences for modular and $$p$$-adic modular forms 11T24 Other character sums and Gauss sums 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 14J32 Calabi-Yau manifolds (algebro-geometric aspects) 14J33 Mirror symmetry (algebro-geometric aspects) 33C20 Generalized hypergeometric series, $${}_pF_q$$

Zbl 1284.33001

LMFDB
Full Text:

### References:

 [1] Ahlgren, Scott and Ono, Ken, A {G}aussian hypergeometric series evaluation and {A}p\'ery number congruences, Journal f\"ur die Reine und Angewandte Mathematik. [Crelle’s Journal], 518, 187-212, (2000) · Zbl 0940.33002 [2] Berndt, Bruce C., Ramanujan’s notebooks, {P}art {V}, xiv+624, (1998), Springer-Verlag, New York · Zbl 0886.11001 [3] Beukers, F., Another congruence for the {A}p\'ery numbers, Journal of Number Theory, 25, 2, 201-210, (1987) · Zbl 0614.10011 [4] Beukers, Frits and Cohen, Henri and Mellit, Anton, Finite hypergeometric functions, Pure and Applied Mathematics Quarterly, 11, 4, 559-589, (2015) · Zbl 1397.11162 [5] Cooper, Shaun, Inversion formulas for elliptic functions, Proceedings of the London Mathematical Society. Third Series, 99, 2, 461-483, (2009) · Zbl 1248.11031 [6] Damerell, R. M., {$$L$$}-functions of elliptic curves with complex multiplication. {I}, Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 17, 287-301, (1970) · Zbl 0209.24603 [7] Evans, R. J., Review of \cite{AO00} [8] Frechette, Sharon and Ono, Ken and Papanikolas, Matthew, Gaussian hypergeometric functions and traces of {H}ecke operators, International Mathematics Research Notices, 2004, 60, 3233-3262, (2004) · Zbl 1088.11029 [9] Glaisher, J. W. L., On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, The Quarterly Journal of Pure and Applied Mathematics, 38, 1-62, (1906) · JFM 37.0214.03 [10] Golyshev, Vasily and Mellit, Anton, Gamma structures and {G}auss’s contiguity, Journal of Geometry and Physics, 78, 12-18, (2014) · Zbl 1284.33001 [11] Greene, John, Hypergeometric functions over finite fields, Transactions of the American Mathematical Society, 301, 1, 77-101, (1987) · Zbl 0629.12017 [12] Guillera, Jesus, Bilateral sums related to {R}amanujan-like series · Zbl 1278.33003 [13] Guillera, Jesus and Rogers, Mathew, Ramanujan series upside-down, Journal of the Australian Mathematical Society, 97, 1, 78-106, (2014) · Zbl 1305.33014 [14] Kilbourn, Timothy, An extension of the {A}p\'ery number supercongruence, Acta Arithmetica, 123, 4, 335-348, (2006) · Zbl 1170.11008 [15] {The LMFDB Collaboration}, The $$L$$-functions and modular forms database [16] Long, Ling, Hypergeometric evaluation identities and supercongruences, Pacific Journal of Mathematics, 249, 2, 405-418, (2011) · Zbl 1215.33002 [17] Long, L. and Tu, F.-T. and Yui, N. and Zudilin, W., Supercongruences for rigid hypergeometric {C}alabi–{Y}au threefolds [18] McCarthy, Dermot, Extending {G}aussian hypergeometric series to the {$$p$$}-adic setting, International Journal of Number Theory, 8, 7, 1581-1612, (2012) · Zbl 1253.33024 [19] Osburn, R. and Straub, A. and Zudilin, W., A modular supercongruence for {$$_6F_5$$}: an {A}p\'ery-like story [20] Roberts, D. and Rodriguez Villegas, F., Hypergeometric supercongruences · Zbl 1443.11022 [21] Rodriguez Villegas, Fernando, Hypergeometric families of {C}alabi–{Y}au manifolds, Calabi–{Y}au Varieties and Mirror Symmetry ({T}oronto, {ON, Fields Inst. Commun., 38, 223-231, (2003), Amer. Math. Soc., Providence, RI} · Zbl 1062.11038 [22] Rodriguez Villegas, Fernando, Hypergeometric motives · Zbl 1062.11038 [23] Rogers, M. and Wan, J. G. and Zucker, I. J., Moments of elliptic integrals and critical {$$L$$}-values, Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan, 37, 1, 113-130, (2015) · Zbl 1383.11048 [24] Scheidegger, Emanuel, Analytic continuation of hypergeometric functions in the resonant case · Zbl 1226.81246 [25] Shimura, Goro, The special values of the zeta functions associated with cusp forms, Communications on Pure and Applied Mathematics, 29, 6, 783-804, (1976) · Zbl 0348.10015 [26] Shimura, Goro, On the periods of modular forms, Mathematische Annalen, 229, 3, 211-221, (1977) · Zbl 0363.10019 [27] Silverman, Joseph H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, xx+513, (2009), Springer, Dordrecht · Zbl 1194.11005 [28] Slater, Lucy Joan, Generalized hypergeometric functions, xiii+273, (1966), Cambridge University Press, Cambridge [29] Stienstra, Jan, Mahler measure variations, {E}isenstein series and instanton expansions, Mirror Symmetry. {V}, AMS/IP Stud. Adv. Math., 38, 139-150, (2006), Amer. Math. Soc., Providence, RI · Zbl 1118.11047 [30] Stienstra, Jan and Beukers, Frits, On the {P}icard–{F}uchs equation and the formal {B}rauer group of certain elliptic {$$K3$$}-surfaces, Mathematische Annalen, 271, 2, 269-304, (1985) · Zbl 0539.14006 [31] Swisher, Holly, On the supercongruence conjectures of van {H}amme, Research in the Mathematical Sciences, 2, Art. 18, 21 pages, (2015) · Zbl 1337.33005 [32] van Hamme, L., Some conjectures concerning partial sums of generalized hypergeometric series, {$$p$$}-Adic Functional Analysis ({N}ijmegen, 1996), Lecture Notes in Pure and Appl. Math., 192, 223-236, (1997), Dekker, New York · Zbl 0895.11051 [33] Verrill, H. A., Congruences related to modular forms, International Journal of Number Theory, 6, 6, 1367-1390, (2010) · Zbl 1209.11047 [34] Zagier, Don B., Arithmetic and topology of differential equations, Proceedings of the Seventh European Congress of Mathematics (Berlin, July 18-22, 2016), 717-776, (2018), European Mathematical Society, Berlin · Zbl 1471.11167 [35] Zeilberger, Doron, Gauss’s {$${}_2F_1(1)$$} cannot be generalized to {$${}_2F_1(x)$$}, Journal of Computational and Applied Mathematics, 39, 3, 379-382, (1992) · Zbl 0764.33001 [36] Zudilin, Wadim, Ramanujan-type formulae for {$$1/\pi$$}: a second wind?, Modular Forms and String Duality, Fields Inst. Commun., 54, 179-188, (2008), Amer. Math. Soc., Providence, RI · Zbl 1159.11053 [37] Zudilin, Wadim, Ramanujan-type supercongruences, Journal of Number Theory, 129, 8, 1848-1857, (2009) · Zbl 1231.11147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.