×

Hypergeometric rational approximations to \(\zeta (4)\). (English) Zbl 1460.11104

The main result of this paper is that \(\mu(\zeta(4))\leq 12.51085940\dots\) where \(\zeta(x)=\sum_{n=1}^\infty \frac 1{n^x}\) is a zeta function and \(\mu(z)\) is the irrationality measure exponent of the number \(z\). The proof makes use the hypergeometric integrals and group theory.

MSC:

11J82 Measures of irrationality and of transcendence
11Y60 Evaluation of number-theoretic constants
33C20 Generalized hypergeometric series, \({}_pF_q\)
33C60 Hypergeometric integrals and functions defined by them (\(E\), \(G\), \(H\) and \(I\) functions)
PDF BibTeX XML Cite
Full Text: DOI arXiv

Online Encyclopedia of Integer Sequences:

Decimal expansion of zeta(4).

References:

[1] Apéry, R., Irrationalité de ζ(2) et ζ(3), Astérisque61 (1979), 11-13. · Zbl 0401.10049
[2] Bailey, W. N., Generalized hypergeometric series, (Cambridge University Press, 1935). · JFM 61.0406.01
[3] Ball, K. and Rivoal, T., Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math.146(1) (2001), 193-207. · Zbl 1058.11051
[4] Beukers, F., A note on the irrationality of ζ(2) and ζ(3), Bull. Lond. Math. Soc.11(3) (1979), 268-272. · Zbl 0421.10023
[5] Cohen, H., Accélération de la convergence de certaines récurrences linéaires, Semin. Theor. Nombres Bordeaux101980-1981), exp. 16, 2 pages. · Zbl 0479.10023
[6] Fischler, S., Irrationalité de valeurs de zêta (d’après Apéry, Rivoal, …), Astérisque294 (2004), 27-62. · Zbl 1101.11024
[7] Fischler, S., Sprang, J. and Zudilin, W., Many odd zeta values are irrational, Compos. Math.155(5) (2019), 938-952. · Zbl 1430.11097
[8] Gutnik, L. A., On the irrationality of certain quantities involving ζ(3), Uspekhi Mat. Nauk. [Russian Math. Surveys]34(3) (1979), 190; Acta Arith.42(3) (1983), 255-264.
[9] Hata, M., Legendre type polynomials and irrationality measures, J. Reine Angew. Math.407 (1990), 99-125. · Zbl 0692.10034
[10] Krattenthaler, C. and Rivoal, T., Hypergéométrie et fonction zêta de Riemann, (American Mathematical Society, 2007). · Zbl 1113.11039
[11] Krattenthaler, C. and Zudilin, W., Hypergeometry inspired by irrationality questions, Kyushu J. Math.73(1) (2019), 189-203. · Zbl 1450.11072
[12] Marcovecchio, R., The Rhin-Viola method for log 2, Acta Arith.139(2) (2009), 147-184. · Zbl 1197.11083
[13] Nesterenko, Yu. V., A few remarks on ζ(3), Mat. Zametki [Math. Notes]59(6) (1996), 865-880.
[14] Rhin, G. and Viola, C., On a permutation group related to ζ(2), Acta Arith.77(3) (1996), 23-56. · Zbl 0864.11037
[15] Rhin, G. and Viola, C., The group structure for ζ(3), Acta Arith.97(3) (2001), 269-293. · Zbl 1004.11042
[16] Rivoal, T., La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Math. Acad. Sci. Paris Ser. I331(4) (2000), 267-270. · Zbl 0973.11072
[17] Sorokin, V. N., On algorithm for fast calculation of π^4, preprint (Russian Academy of Sciences, M.V. Keldysh Institute for Applied Mathematics, Moscow 2002), 46 pages, available at http://mi.mathnet.ru/eng/ipmp1002.
[18] Van Der Poorten, A., A proof that Euler missed…Apéry’s proof of the irrationality of ζ(3) (an informal report), Math. Intelligencer1(4) (1978/79), 195-203. · Zbl 0409.10028
[19] Zudilin, W., Well-poised hypergeometric service for diophantine problems of zeta values, J. Théor. Nombres Bordeaux15(2) (2003), 593-626. · Zbl 1156.11326
[20] Zudilin, W., Arithmetic of linear forms involving odd zeta values, J. Théor. Nombres Bordeaux16(1) (2004), 251-291. · Zbl 1156.11327
[21] Zudilin, W., Well-poised hypergeometric transformations of Euler-type multiple integrals, J. Lond. Math. Soc. (2)70(1) (2004), 215-230. · Zbl 1065.11054
[22] Zudilin, W., Two hypergeometric tales and a new irrationality measure of ζ(2), Ann. Math. Qué.38(1) (2014), 101-117. · Zbl 1307.11085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.