×

Viscometric flow of dense granular materials under controlled pressure and shear stress. (English) Zbl 1461.76508

Summary: This study examines the flow of dense granular materials under external shear stress and pressure using discrete element method simulations. In this method, the material is allowed to strain along all periodic directions and adapt its solid volume fraction in response to an imbalance between the internal state of stress and the external applied stress. By systematically varying the external shear stress and pressure, the steady rheological response is simulated for: (1) rate-independent quasi-static flow; and (2) rate-dependent inertial flow. The simulated flow is viscometric with non-negligible first and second normal stress differences. While both normal stress differences are negative in inertial flows, the first normal stress difference switches from negative to slightly positive, and second normal stress difference tends to zero in quasi-static flows. The first normal stress difference emerges from a lack of coaxiality between a second-rank contact fabric tensor and strain rate tensor in the flow plane, while the second normal stress difference is linked to an excess of contacts in the shear plane compared with the vorticity direction. A general rheological model of second order (in terms of strain rate tensor) is proposed to describe the two types of flow, and the model is calibrated for various values of interparticle friction from simulations on nearly monodisperse spheres. The model incorporates normal stress differences in both regimes of flow and provides a complete viscometric description of steady dense granular flows.

MSC:

76T25 Granular flows

References:

[1] Alam, M. & Luding, S.2003First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids15 (8), 2298-2312. · Zbl 1186.76019
[2] Alam, M. & Luding, S.2005Non-newtonian granular fluid: simulation and theory. In Powders and Grains (ed. Garcia-Rojo, R., Herrmann, H. J. & Mcnamara, S.), pp. 1141-1144. Balkema.
[3] Anand, L. & Gu, C.2000Granular materials: constitutive equations and strain localization. J. Mech. Phys. Solids48 (8), 1701-1733. · Zbl 0977.74016
[4] Bagnold, R. A.1954Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. R. Soc. Lond. A225 (1160), 49-63.
[5] Bathurst, R. J. & Rothenburg, L.1990Observations on stress-force-fabric relationships in idealized granular materials. Mech. Mater.9 (1), 65-80.
[6] Bhateja, A. & Khakhar, D. V.2018Rheology of dense granular flows in two dimensions: comparison of fully two-dimensional flows to unidirectional shear flow. Phys. Rev. Fluids3 (6), 062301.
[7] Bird, R. B. & Hassager, O.1987Dynamics of Polymeric Liquids: Fluid mechanics, vol. 1. Wiley.
[8] Boyer, F., Guazzelli, É. & Pouliquen, O.2011aUnifying suspension and granular rheology. Phys. Rev. Lett.107 (18), 188301. · Zbl 1241.76008
[9] Boyer, F., Pouliquen, O. & Guazzelli, É.2011bDense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech.686, 5-25. · Zbl 1241.76008
[10] Brunn, P. O. & Asoud, H.2003An explicit constitutive equation of a simple fluid in motions with constant stretch history. J. Non-Newtonian Fluid Mech.112 (2-3), 129-139. · Zbl 1065.76012
[11] Campbell, C. S.2002Granular shear flows at the elastic limit. J. Fluid Mech.465, 261-291. · Zbl 1020.76051
[12] Campbell, C. S.2005Stress-controlled elastic granular shear flows. J. Fluid Mech.539 (1), 273-297. · Zbl 1075.74027
[13] Clavaud, C., Bérut, A., Metzger, B. & Forterre, Y.2017Revealing the frictional transition in shear-thickening suspensions. Proc. Natl Acad. Sci. USA114, 5147-5152.
[14] Coleman, B. D, Markovitz, H. & Noll, W.1966Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment. Springer-Verlag. · Zbl 0137.21903
[15] Cortet, P.-P., Bonamy, D., Daviaud, F., Dauchot, O., Dubrulle, B. & Renouf, M.2009Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow. Europhys. Lett.88 (1), 14001. · Zbl 1188.76266
[16] De Coulomb, A. F., Bouzid, M., Claudin, P., Clément, E. & Andreotti, B.2017Rheology of granular flows across the transition from soft to rigid particles. Phys. Rev. Fluids2 (10), 102301.
[17] Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É.2011Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech.686, 26-39. · Zbl 1241.76014
[18] Cundall, P. A. & Strack, O. D. L.1979A discrete numerical model for granular assemblies. Géotechnique29 (1), 47-65.
[19] Da Cruz, F., Emam, S., Prochnow, M., Roux, J. N. & Chevoir, F.2005Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E72 (2), 021309.
[20] Dbouk, T., Lobry, L. & Lemaire, E.2013Normal stresses in concentrated non-brownian suspensions. J. Fluid Mech.715, 239-272. · Zbl 1284.76378
[21] Degiuli, E., Düring, G., Lerner, E. & Wyart, M.2015Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E91, 062206.
[22] Degiuli, E., Mcelwaine, J. N. & Wyart, M.2016Phase diagram for inertial granular flows. Phys. Rev. E94, 012904.
[23] Degiuli, E. & Wyart, M.2017Friction law and hysteresis in granular materials. Proc. Natl Acad. Sci. USA114 (35), 9284-9289. · Zbl 1404.74030
[24] Depken, M., Lechman, J. B., Van Hecke, M., Van Saarloos, W. & Grest, G. S.2007Stresses in smooth flows of dense granular media. Europhys. Lett.78 (5), 58001.
[25] Depken, M., Van Saarloos, W. & Van Hecke, M.2006Continuum approach to wide shear zones in quasistatic granular matter. Phys. Rev. E73 (3), 031302.
[26] Dijksman, J. A., Wortel, G. H., Van Dellen, L. T. H., Dauchot, O. & Van Hecke, M.2011Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett.107 (10), 108303.
[27] Evans, D. J. & Ely, J. F.1986Viscous flow in the stress ensemble. Mol. Phys.59, 1043-1048.
[28] Flyvbjerg, H. & Petersen, H. G.1989Error estimates on averages of correlated data. J. Chem. Phys.91 (1), 461-466.
[29] Forterre, Y. & Pouliquen, O.2008Flows of dense granular media. Annu. Rev. Fluid Mech.40 (1), 1-24. · Zbl 1136.76051
[30] Gallier, S., Lemaire, E., Peters, F. & Lobry, L.2014Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech.757, 514-549. · Zbl 1416.76326
[31] Gao, Z., Zhao, J., Li, X. & Dafalias, Y. F.2014A critical state sand plasticity model accounting for fabric evolution. Intl J. Numer. Anal. Meth. Geomech.38 (4), 370-390.
[32] Giusteri, G. G. & Seto, R.2018A theoretical framework for steady-state rheometry in generic flow conditions. J. Rheol.62 (3), 713-723.
[33] Goddard, J. D.1984Dissipative materials as models of thixotropy and plasticity. J. Non-Newtonian Fluid Mech.14, 141-160. · Zbl 0555.76010
[34] Goddard, J. D.1986Dissipative materials as constitutive models for granular media. Acta Mechanica63 (1-4), 3-13. · Zbl 0603.73004
[35] Goddard, J. D.2006A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech.568, 1-17. · Zbl 1177.76444
[36] Goddard, J. D.2014Continuum modeling of granular media. Appl. Mech. Rev.66 (5), 050801.
[37] Guazzelli, É. & Pouliquen, O.2018Rheology of dense granular suspensions. J. Fluid Mech.852, P1. · Zbl 1415.76680
[38] Henann, D. L. & Kamrin, K.2013A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA110, 6730-6735. · Zbl 1292.76070
[39] Hood, L. M., Evans, D. J. & Morriss, G. P.1987Time correlation functions in the stress ensemble. Mol. Phys.62, 419-428.
[40] Jop, P., Forterre, Y. & Pouliquen, O.2006A constitutive law for dense granular flows. Nature441 (7094), 727-730.
[41] Kamrin, K. & Koval, G.2014Effect of particle surface friction on nonlocal constitutive behavior of flowing granular media. Comput. Part. Mech.1 (2), 169-176.
[42] Kanatani, K.-I.1984Distribution of directional data and fabric tensors. Intl J. Engng Sci.22 (2), 149-164. · Zbl 0586.73004
[43] Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F.2009Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E79 (2), 021306.
[44] Larson, R. G.1985Flows of constant stretch history for polymeric materials with power-law distributions of relaxation times. Rheol. Acta24 (5), 443-449. · Zbl 0576.76006
[45] Li, X. S. & Dafalias, Y. F.2012Anisotropic critical state theory: role of fabric. J. Engng Mech. ASCE138 (3), 263-275.
[46] Lois, G., Lemaître, A. & Carlson, J. M.2005Numerical tests of constitutive laws for dense granular flows. Phys. Rev. E72 (5), 051303.
[47] Lu, K., Brodsky, E. E. & Kavehpour, H. P.2007Shear-weakening of the transitional regime for granular flow. J. Fluid Mech.587, 347-372. · Zbl 1141.76315
[48] Martyna, G. J., Tuckerman, M. E., Tobias, D. J. & Klein, M. L.1996Explicit reversible integrators for extended systems dynamics. Mol. Phys.87, 1117-1157.
[49] Mcelwaine, J. N., Takagi, D. & Huppert, H. E.2012Surface curvature of steady granular flows. Granul. Matt.14 (2), 229-234.
[50] Mehandia, V., Gutam, K. J. & Nott, P. R.2012Anomalous stress profile in a sheared granular column. Phys. Rev. Lett.109 (12), 128002.
[51] Mehrabadi, M. M. & Cowin, S. C.1978Initial planar deformation of dilatant granular materials. J. Mech. Phys. Solids26 (4), 269-284. · Zbl 1190.74010
[52] Midi, G. D. R.2004On dense granular flows. Eur. Phys. J. E14 (4), 341-365.
[53] Nemat-Nasser, S.2000A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids48 (6-7), 1541-1563. · Zbl 0984.74020
[54] Noll, W.1962Motions with constant stretch history. Arch. Rat. Mech. Anal.11 (1), 97-105. · Zbl 0112.18301
[55] Oda, M.1982Fabric tensor for discontinuous geological materials. Soils Found.22 (4), 96-108.
[56] Otsuki, M. & Hayakawa, H.2011Critical scaling near jamming transition for frictional granular particles. Phys. Rev. E83 (5), 051301. · Zbl 1366.76088
[57] Parra, E. R. & Kamrin, K.2019Capturing transient granular rheology with extended fabric tensor relations. Granul. Matt.21 (89), 1-7.
[58] Parrinello, M. & Rahman, A.1981Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys.52 (12), 7182-7190.
[59] Perrin, H., Clavaud, C., Wyart, M., Metzger, B. & Forterre, Y.2019Interparticle friction leads to nonmonotonic flow curves and hysteresis in viscous suspensions. Phys. Rev. X9, 031027.
[60] Peyneau, P. E. & Roux, J. N.2008Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E78 (1), 011307.
[61] Plimpton, S.1995Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.117 (1), 1-19. · Zbl 0830.65120
[62] Pouliquen, O.1999Scaling laws in granular flows down rough inclined planes. Phys. Fluids11 (3), 542-548. · Zbl 1147.76477
[63] Radjai, F., Roux, J. N. & Daouadji, A.2017Modeling granular materials: century-long research across scales. J. Engng Mech. ASCE143 (4), 04017002.
[64] Rajagopal, K. R.2006On implicit constitutive theories for fluids. J. Fluid Mech.550, 243-249. · Zbl 1097.76009
[65] Rivlin, R. S.1955Stress-deformation relations for isotropic materials. Arch. Rat. Mech. Anal.4, 323-425. · Zbl 0064.42004
[66] Rothenburg, L. & Bathurst, R. J.1989Analytical study of induced anisotropy in idealized granular materials. Géotechnique39 (4), 601-614.
[67] Rycroft, C. H., Kamrin, K. & Bazant, M. Z.2009Assessing continuum postulates in simulations of granular flow. J. Mech. Phys. Solids57 (5), 828-839.
[68] Saha, S. & Alam, M.2016Normal stress differences, their origin and constitutive relations for a sheared granular fluid. J. Fluid Mech.795, 549-580. · Zbl 1359.76313
[69] Salerno, K. M., Bolintineanu, D. S., Grest, G. S., Lechman, J. B., Plimpton, S. J., Srivastava, I. & Silbert, L. E.2018Effect of shape and friction on the packing and flow of granular materials. Phys. Rev. E98 (5), 050901.
[70] Schofield, A. & Wroth, P.1968Critical State Soil Mechanics, vol. 310. McGraw-Hill.
[71] Schuhmacher, P., Radjai, F. & Roux, S.2017 Wall roughness and nonlinear velocity profiles in granular shear flows. In EPJ Web of Conferences, vol. 140, p. 03090. EDP Sciences.
[72] Schunk, P. R. & Scriven, L. E.1990Constitutive equation for modeling mixed extension and shear in polymer solution processing. J. Rheol.34 (7), 1085-1119.
[73] Seto, R. & Giusteri, G. G.2018Normal stress differences in dense suspensions. J. Fluid Mech.857, 200-215. · Zbl 1415.76697
[74] Shinoda, W., Shiga, M. & Mikami, M.2004Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys. Rev. B69 (13), 134103.
[75] Shojaaee, Z., Brendel, L., Török, J. & Wolf, D. E.2012aShear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction. Phys. Rev. E86, 011302.
[76] Shojaaee, Z., Roux, J. N., Chevoir, F. & Wolf, D. E.2012bShear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region. Phys. Rev. E86, 011301.
[77] Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J.2001Granular flow down an inclined plane: bagnold scaling and rheology. Phys. Rev. E64 (5), 051302.
[78] Smith, K. C., Srivastava, I., Fisher, T. S. & Alam, M.2014Variable-cell method for stress-controlled jamming of athermal, frictionless grains. Phys. Rev. E89 (4), 042203.
[79] Sokolovskii, V. V.1965Statics of Granular Media. Pergamon Press.
[80] Souza, I. & Martins, J. L.1997Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics. Phys. Rev. B55 (14), 8733.
[81] Spencer, A. J. M.1964A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids12 (5), 337-351. · Zbl 0125.15208
[82] Srivastava, I. & Fisher, T. S.2017Slow creep in soft granular packings. Soft Matt.13 (18), 3411-3421.
[83] Srivastava, I., Lechman, J. B., Grest, G. S. & Silbert, L. E.2020Evolution of internal granular structure at the flow-arrest transition. Granul. Matt.22 (41), 1-8.
[84] Srivastava, I., Silbert, L. E., Grest, G. S. & Lechman, J. B.2019Flow-arrest transitions in frictional granular matter. Phys. Rev. Lett.122 (4), 048003.
[85] Stickel, J. J., Phillips, R. J. & Powell, R. L.2006A constitutive model for microstructure and total stress in particulate suspensions. J. Rheol.50 (4), 379-413.
[86] Sun, J. & Sundaresan, S.2011A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech.682, 590-616. · Zbl 1241.76416
[87] Tapia, F., Pouliquen, O. & Guazzelli, É.2019Influence of surface roughness on the rheology of immersed and dry frictional spheres. Phys. Rev. Fluid4, 104302.
[88] Thompson, R. L. & Mendes, P. R. S.2005Persistence of straining and flow classification. Intl J. Engng Sci.43 (1-2), 79-105. · Zbl 1211.76013
[89] Thornton, C. & Zhang, L.2010On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Géotechnique60 (5), 333-341.
[90] Wagner, C. E. & Mckinley, G. H.2016The importance of flow history in mixed shear and extensional flows. J. Non-Newtonian Fluid Mech.233, 133-145.
[91] Walton, O. R. & Braun, R. L.1986Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol.30 (5), 949-980.
[92] Wang, C.-C.1965A representation theorem for the constitutive equation of a simple material in motions with constant stretch history. Arch. Rat. Mech. Anal.20 (5), 329-340. · Zbl 0269.73001
[93] Wang, M. & Brady, J. F.2015Constant stress and pressure rheology of colloidal suspensions. Phys. Rev. Lett.115, 158301.
[94] Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S.2013Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids25 (7), 070605.
[95] Zhu, H., Mehrabadi, M. M. & Massoudi, M.2006Incorporating the effects of fabric in the dilatant double shearing model for planar deformation of granular materials. Intl J. Plasticity22 (4), 628-653. · Zbl 1190.74011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.