×

Zero-one Schubert polynomials. (English) Zbl 1464.14057

Schubert polynomials \(\mathfrak{S}_w\) represent cohomology classes of Schubert cycles in the full flag variety. Their coefficients are nonnegative integers. There exists a number of combinatorial formulas for computing these coefficients. This paper is devoted to the following question: when are all the coefficients of a Schubert polynomial equal to \(0\) or \(1\)? Such polynomials are called zero-one Schubert polynomials.
To answer this question, the authors first make the following observation: if a permutation \(\sigma\in S_m\) is a pattern of \(w\in S_n\), then the Schubert polynomial \(\mathfrak{S}_w\) equals a monomial times \(\mathfrak{S}_\sigma\) plus a polynomial with nonnegative coefficients. Hence the set of 0-1 Schubert polynomials is closed under pattern containment. Using Magyar’s orthodontia, an inductive algorithm for computing \(\mathfrak{S}_w\) in terms of the Rothe diagram of \(w\), they describe the set of twelve avoided patterns, and also formulate equivalent confitions for a Schubert polynomial to be 0-1 in terms of Rothe diagrams and orthodontic sequences of permutations.
According to the recent result of the same authors about the supports of Schubert polynomials (see [A. Fink et al., Adv. Math. 332, 465–475 (2018; Zbl 1443.05179)]), this implies that each 0-1 Schubert polynomial is equal to the integer transform of a generalized permutahedron.

MSC:

14N15 Classical problems, Schubert calculus
14M15 Grassmannians, Schubert varieties, flag manifolds
05E14 Combinatorial aspects of algebraic geometry
05A05 Permutations, words, matrices

Citations:

Zbl 1443.05179
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bergeron, N.; Billey, S., RC-graphs and Schubert polynomials, Exp. Math., 2, 4, 257-269 (1993) · Zbl 0803.05054 · doi:10.1080/10586458.1993.10504567
[2] Billey, S.; Jockusch, W.; Stanley, RP, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., 2, 4, 345-374 (1993) · Zbl 0790.05093 · doi:10.1023/A:1022419800503
[3] Demazure, M., Une nouvelle formule des caracteres, J. Combin. Theory Ser. A, 70, 1, 107-143 (1995) · Zbl 0819.05058 · doi:10.1016/0097-3165(95)90083-7
[4] Fink, A., Mészáros, K., St, A., Dizier, : Schubert polynomials as integer point transforms of generalized permutahedra. Adv. Math. 332, 465-475 (2018) · Zbl 1443.05179
[5] Fomin, S.; Kirillov, AN, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math., 153, 1, 123-143 (1996) · Zbl 0852.05078 · doi:10.1016/0012-365X(95)00132-G
[6] Fomin, S.; Stanley, RP, Schubert polynomials and the nilCoxeter algebra, Adv. Math., 103, 2, 196-207 (1994) · Zbl 0809.05091 · doi:10.1006/aima.1994.1009
[7] Knutson, A.; Miller, E., Gröbner geometry of Schubert polynomials, Ann. Math. (2), 161, 3, 1245-1318 (2005) · Zbl 1089.14007 · doi:10.4007/annals.2005.161.1245
[8] Kraśkiewicz, W.; Pragacz, P., Foncteurs de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 304, 9, 209-211 (1987) · Zbl 0642.13011
[9] Lam, T., Lee, S., Shimozono, M.: Back stable Schubert calculus, Jun 2018. arxiv: 1806.11233
[10] Lascoux, A.; Schützenberger, M-P, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér I Math, 294, 13, 447-450 (1982) · Zbl 0495.14031
[11] Lascoux, A.; Schützenberger, M-P, Keys and standard bases, IMA Math. Appl., 19, 125-144 (1990) · Zbl 0815.20013
[12] Lenart, C., A unified approach to combinatorial formulas for Schubert polynomials, J. Algebraic Combin., 20, 3, 263-299 (2004) · Zbl 1056.05146 · doi:10.1023/B:JACO.0000048515.00922.47
[13] Magyar, P., Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv., 73, 4, 603-636 (1998) · Zbl 0951.14036 · doi:10.1007/s000140050071
[14] Manivel, L.: Symmetric functions, Schubert polynomials and degeneracy loci, volume 6 of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3 · Zbl 0998.14023
[15] Monical, C., Tokcan, N., Yong, A.: Newton polytopes in algebraic ombinatorics. Selecta Math. (N.S.) 25, 66 (2019) · Zbl 1426.05175
[16] Reiner, V.; Shimozono, M., Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A, 70, 1, 107-143 (1995) · Zbl 0819.05058 · doi:10.1016/0097-3165(95)90083-7
[17] Weigandt, A.; Yong, A., The prism tableau model for Schubert polynomials, J. Comb. Theory Ser. A, 154, 551-582 (2018) · Zbl 1373.05219 · doi:10.1016/j.jcta.2017.09.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.