Branching laws for classical groups: the non-tempered case. (English) Zbl 1470.11126

Consider representations of a classical group \(G\) over a local field \(k\) arising as local components of automorphic representations in the automorphic dual and with \(A\)-paramaters (Arthur parameters) of the form \[\phi_A:WD(k)\times SL_2({\mathbb C})\rightarrow\mbox{}^L G\] where the restriction of \(\phi_A\) to the Weil-Deligne group \(WD(k)\) of \(k\) is an admissible homomorphism with bounded image and the restriction to \(SL_2\) is algebraic. Recall that the abelianization of the Weil group is isomorphic to \(k^*\). Now, composing \(\phi_A\) with the map \[w\mapsto (w,\text{diag}(\mid w\mid^{1/2},\mid w\mid^{-1/2}))\] where \(\mid\;\mid\) denotes the canonical absolute value on \(k^*\), one gets an injection \(\phi_A\mapsto\phi\) from the set of \(A\)-parameters to the set of \(L\)-parameters. Such \(L\)-parameters are known as \(L\)-parameters of Arthur type. When the \(L\)-parameter \(\phi\) is tempered, the associated \(L\)-packet is generic.
Earlier work by the authors suggested several precise conjectures, in both the local and the global cases, for restrictions of representations lying in local \(L\)-packets whose \(L\)-parameters are generic. In the paper under review, the authors discuss a generalization of these conjectures to certain non-generic \(L\)-packets.
Reviewer: Salah Mehdi (Metz)


11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings


Zbl 1280.22019
Full Text: DOI arXiv


[1] Aizenbud, A., Gourevitch, D., Rallis, S. and Schiffmann, G., Multiplicity one theorems, Ann. of Math. 172 (2010), 1407-1434. · Zbl 1202.22012
[2] Anandavardhanan, U. and Prasad, D., Distinguished representations for SL \((n)\), Math. Res. Lett. 25 (2018), 1695-1717. · Zbl 1422.22017
[3] Arthur, J., Unipotent automorphic representations: conjectures. Orbites unipotentes et representations, II, Astérisque171-172 (1989), 13-71.
[4] Arthur, J., The endoscopic classification of representations: orthogonal and symplectic groups, vol. 61 (Colloquium Publications by the American Mathematical Society, 2013). · Zbl 1310.22014
[5] Atobe, H. and Gan, W. T., Local theta correspondence of tempered representations and Langlands parameters, Invent. Math. 210 (2017), 341-415. · Zbl 1394.11044
[6] Badulescu, I., Lapid, E. and Mínguez, A., Une condition suffisante pour l’irréductibilité d’une induite parabolique de \({{\rm GL}}(m,D)\), Ann. Inst. Fourier (Grenoble)63 (2013), 2239-2266. · Zbl 1315.22019
[7] Bernstein, J. and Zelevinsky, A., Induced representations of reductive \(p\)-adic groups, Ann. Sci. Éc. Norm. Supér. 10 (1977), 441-472. · Zbl 0412.22015
[8] Chan, K. Y., Homological branching law for \(({{\rm GL}}_{n+1}(F),{{\rm GL}}_n(F))\): projectivity and indecomposability, Preprint (2019), arXiv:1905.01668.
[9] Clozel, L., Combinatorial consequences of Arthur’s Conjectures and the Burger-Sarnak method, Int. Math. Res. Not. IMRN11 (2004), 511-523. · Zbl 1082.11028
[10] Flicker, Y. Z., On distinguished representations, J. Reine Angew. Math. 418 (1991), 139-172. · Zbl 0725.11026
[11] Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I, Astérisque346 (2012), 1-109. · Zbl 1280.22019
[12] Gan, W. T., Gross, B. H. and Prasad, D., Restrictions of representations of classical groups: examples. Sur les conjectures de Gross et Prasad. I, Astérisque346 (2012), 111-170. · Zbl 1279.22023
[13] Gan, W.T. and Gurevich, N., Restrictions of Saito-Kurokawa representations, in Automorphic forms and L-functions I. Global aspects, , vol. 488 (American Mathematical Society, Providence, RI, 2009), 95-124. With an appendix by Gordan Savin. · Zbl 1185.11036
[14] Gan, W. T. and Ichino, A., The Shimura-Waldspurger correspondence for \({\rm Mp}_{2n}\), Ann. of Math. (2)188 (2018), 965-1016. · Zbl 1486.11076
[15] Gelbart, S. and Rogawski, J., L-functions and Fourier-Jacobi coefficients for the unitary group \({\rm U}(3)\), Invent. Math. 105 (1991), 445-472. · Zbl 0742.11030
[16] Gelbart, S., Rogawski, J. and Soudry, D., Endoscopy, theta-liftings, and period integrals for the unitary group in three variables, Ann. of Math145 (1997), 419-476. · Zbl 1068.11502
[17] Ginzburg, D., Rallis, S. and Soudry, D., On a correspondence between cuspidal representations of \({{\rm GL}}_{2n}\) and \({{{\rm \tilde{S}p}}}_{2n} \), J. Amer. Math. Soc. 12 (1999), 849-907. · Zbl 0928.11027
[18] Ginzburg, D., Rallis, S. and Soudry, D., On explicit lifts of cusp forms from \({{\rm GL}}_m\) to classical groups, Ann. of Math. (2)150 (1999), 807-866. · Zbl 0949.22019
[19] Ginzburg, D., Rallis, S. and Soudry, D., Endoscopic representations of \({{{\rm \tilde{S}p}}}_{2n} \), J. Inst. Math. Jussieu1 (2002), 77-123. · Zbl 1052.11032
[20] Ginzburg, D., Rallis, S. and Soudry, D., The descent map from automorphic representations of GL(n) to classical groups (World Scientific, Hackensack, NJ, 2011). · Zbl 1233.11056
[21] Gross, B. and Prasad, D., On the decomposition of a representation of \({\rm SO}_n\) when restricted to \(\,{\rm SO}_{n-1}\), Canad. J. Math. 44 (1992), 974-1002. · Zbl 0787.22018
[22] Gross, B. and Prasad, D., On irreducible representations of \(\,{\rm SO}_{2n+1}\times{\rm SO}_{2m} \), Canad. J. Math. 46 (1994), 930-950. · Zbl 0829.22031
[23] Gurevich, M., On restriction of unitarizable representations of general linear groups and the non-generic local Gan-Gross-Prasad conjecture, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2018), arXiv:1808.02640.
[24] Gurevich, N. and Szpruch, D., The non-tempered \(\theta_{{10}}\) Arthur parameter and Gross-Prasad conjecture, J. Number Theory153 (2015), 372-426. · Zbl 1312.11041
[25] Haan, J., The local Gan-Gross-Prasad conjecture for \({\rm U}(3)\times{\rm U}(2)\): the non-generic case, J. Number Theory165 (2016), 324-354. · Zbl 1401.22016
[26] Haan, J., On the Fourier-Jacobi model for some endoscopic Arthur packet of \({\rm U}(3)\times{\rm U}(3)\): the nongeneric case, Pacific J. Math. 286 (2017), 69-89. · Zbl 1421.11032
[27] Harder, G., Langlands, R. P. and Rapoport, M., Algebraische Zyklen auf Hilbert-Blumenthal- Flächen, J. Reine Angew. Math. 366 (1986), 53-120. · Zbl 0575.14004
[28] Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, , vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich. · Zbl 1036.11027
[29] Hendrickson, A. E., The Burger-Sarnak method and operations on the unitary duals of classical groups, PhD thesis, National University of Singapore (2020), arXiv:2002.11935.
[30] Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), 1378-1425. · Zbl 1216.11057
[31] Ichino, A. and Yamana, S., Periods of automorphic forms: the case of \(({{\rm GL}}_{n+1} \times{{\rm GL}}_n, {{\rm GL}}_n)\), Compos. Math. 151 (2015), 665-712. · Zbl 1338.11053
[32] Jacquet, H., Lapid, E. and Rogawski, J., Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173-240. · Zbl 1012.11044
[33] Jacquet, H., Piatetskii-Shapiro, I. I. and Shalika, J. A., Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464. · Zbl 0525.22018
[34] Jiang, D. and Zhang, L., Arthur parameters and cuspidal automorphic modules of classical groups, Ann. of Math. (2)191 (2020), 739-827. · Zbl 1443.11084
[35] Kable, A., Asai L-functions and Jacquet’s conjecture, Amer. J. Math. 126 (2004), 789-820. · Zbl 1061.11023
[36] Kaletha, T., Minguez, A., Shin, S. W. and White, P.-J., Endoscopic classification of representations: inner forms of unitary groups, Preprint (2014), arXiv:1409.3731.
[37] Mœglin, C., Sur certains paquets d’Arthur et involution d’Aubert-Schneider-Stuhler généralisée, Represent. Theory10 (2006), 86-129. · Zbl 1139.22015
[38] Mœglin, C., Classification et changement de base pour les séries discrètes des groupes unitaires p-adiques, Pacific J. Math. 233 (2007), 159-204. · Zbl 1157.22010
[39] Mœglin, C., Paquets d’Arthur discrets pour un groupe classique p-adique, in Automorphic forms and L-functions II. Local aspects, , vol. 489 (Israel Mathematical Conference Proceedings, American Mathematical Society, Providence, RI, 2009), 179-257. · Zbl 1181.22016
[40] Mœglin, C., Multiplicité 1 dans les paquets d’Arthur aux places p-adiques, in On certain L-functions, , vol. 13 (American Mathematical Society, Providence, RI, 2011), 333-374. · Zbl 1225.22015
[41] Mœglin, C. and Renard, D., Paquets d’Arthur des groupes classiques complexes, in Around Langlands correspondences, , vol. 691 (American Mathematical Society, Providence, RI, 2017), 203-256. · Zbl 1390.22013
[42] Mœglin, C. and Renard, D., Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-déployés, in Relative aspects in representation theory, Langlands functoriality and automorphic forms, , vol. 2221 (Springer, Cham, 2018), 341-361. · Zbl 1457.11063
[43] Mœglin, C. and Renard, D., Sur les paquets d’Arthur des groupes unitaires et quelques conséquences pour les groupes classiques, Pacific J. Math. 299 (2019), 53-88. · Zbl 1515.20259
[44] Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), 1108. · Zbl 1316.22018
[45] Muić, G., Howe correspondence for discrete series representations; the case of \(({{\rm Sp}}(n),O(V))\), J. Reine Angew. Math. 567 (2004), 99-150. · Zbl 1037.22037
[46] Muić, G., On the structure of theta lifts of discrete series for dual pairs \(({{\rm Sp}}(n),O(V))\), Israel J. Math. 164 (2008), 87-124. · Zbl 1153.22020
[47] Muić, G., Theta lifts of tempered representations for dual pairs \(({{\rm Sp}}_{2n},O(V))\), Canad. J. Math. 60 (2008), 1306-1335. · Zbl 1155.22012
[48] Offen, O. and Sayag, E., On unitary representations of \({{\rm GL}}_{2n}\) distinguished by the symplectic group, J. Number Theory125 (2007), 344-355. · Zbl 1147.11028
[49] Prasad, D., Invariant forms for representations of \({{\rm GL}}_2\) over a local field, Amer. J. Math. 114 (1992), 1317-1363. · Zbl 0780.22004
[50] Rogawski, J., Automorphic representations of unitary groups in three variables, , vol. 123 (Princeton University Press, 1990). · Zbl 0724.11031
[51] Rogawski, J., The multiplicity formula for A-packets, in The zeta functions of Picard modular surfaces, eds R. Langlands and D. Ramakrishnan (Publications CRM, Montreal, QC, 1992), 395-419. · Zbl 0823.11027
[52] Soudry, D. and Tanay, Y., On local descent for unitary groups, J. Number Theory146 (2015), 557-626. · Zbl 1380.11068
[53] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. Éc. Norm. Supér. (4)19 (1986), 335-382. · Zbl 0614.22005
[54] Tate, J., Number theoretic background, in Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics, Oregon State University, Corvallis, Oregon, 1977), Part 2, , vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 3-26.
[55] Venkatesh, A., The Burger-Sarnak method and operations on the unitary dual of \({{\rm GL}}(n)\), Represent. Theory9 (2005), 268-286. · Zbl 1077.22022
[56] Venketasubramanian, C. G., Representations of \({{\rm GL}}_n\) distinguished by \({{\rm GL}}_{n-1}\) over a \(p\)-adic field, Israel J. Math. 194 (2013), 1-44. · Zbl 1276.22009
[57] Vogan, D., The local Langlands conjecture, , vol. 145 (American Mathematical Society, Providence, RI, 1993), 305-379. · Zbl 0802.22005
[58] Waldspurger, J.-L., La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes spéciaux orthogonaux, Astérisque347 (2012). · Zbl 1276.22010
[59] Zhu, C. B., Local theta correspondence and nilpotent invariants, in Representations of reductive groups, , vol. 101 (American Mathematical Society, Providence, RI, 2019), 427-450. · Zbl 1471.22011
[60] Zydor, M., Periods of automorphic forms over reductive groups, Preprint (2019), arXiv:1903.01697.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.