×

Large deviations for a terminating compound renewal process. (English. Russian original) Zbl 1470.60081

Theory Probab. Appl. 66, No. 2, 209-227 (2021); translation from Teor. Veroyatn. Primen. 66, No. 2, 261-283 (2021).
Summary: Let \((\xi(i),\eta(i)) \in\mathbb{R}^{d+1}\), \(i \in\mathbb{N}\), be independent and identically distributed random vectors, let \(\xi(i)\in\mathbb{R}^d\) be random vectors, let \(\eta(i)\) be improper nonnegative random variables, and let \(\mathbf{P}(\eta(i) = +\infty)\in(0,1)\). It is assumed that the distribution of the vector \((\xi(1),\eta(1))\) subject to \(\{\eta(1)<+\infty\}\) satisfies the Cramér condition. By a terminating compound renewal process we mean the process \(Z_T =\sum_{k=1}^{N_T}\xi(k)\), where \(N_T = \max\{k \in\mathbb{N}\colon \eta(1)+\dots+\eta(k) \le T\}\) is the renewal process corresponding to improper random variables \(\eta(1), \eta(2), \dots \). We find precise asymptotics of the probabilities \(\mathbf{P}\bigl(Z_T\in I_{\Delta_T}(x)\bigr)\) and \(\mathbf{P}(Z_T = x)\) in the nonlattice and strongly arithmetic cases, respectively; here \(I_{\Delta_T}(x)=\{y\in\mathbb{R}^d\colon x_j\le y_j < x_j+\Delta_T, j=1,\dots,d\} \), and \(\Delta_T\) is a positive function converging sufficiently slowly to zero.

MSC:

60F10 Large deviations
60K05 Renewal theory
Full Text: DOI

References:

[1] A. A. Borovkov and A. A. Mogulskii, Integro-local limit theorems for compound renewal processes under Cramér’s condition I, Siberian Math. J., 59 (2018), pp. 383-402, https://doi.org/10.1134/S0037446618030023. · Zbl 1404.60128
[2] A. A. Borovkov and A. A. Mogulskii, Integro-local limit theorems for compound renewal processes under Cramér’s condition II, Siberian Math. J., 59 (2018), pp. 578-597, https://doi.org/10.1134/S003744661804002X. · Zbl 1404.60129
[3] A. A. Mogulskii and E. I. Prokopenko, Integro-local theorems for multidimensional compound renewal processes, when Cramer’s condition holds I, Sib. Èlektron. Mat. Izv., 15 (2018), pp. 475-502 (in Russian), https://doi.org/10.17377/semi.2018.15.041. · Zbl 1395.60102
[4] A. A. Mogulskii and E. I. Prokopenko, Integro-local theorems for multidimensional compound renewal processes, when Cramer’s condition holds II, Sib. Èlektron. Mat. Izv., 15 (2018), pp. 503-527 (in Russian), https://doi.org/10.17377/semi.2018.15.042. · Zbl 1395.60103
[5] A. A. Mogulskii and E. I. Prokopenko, Integro-local theorems for multidimensional compound renewal processes, when Cramer’s condition holds III, Sib. Èlektron. Mat. Izv., 15 (2018), pp. 528-553 (in Russian), https://doi.org/10.17377/semi.2018.15.043. · Zbl 1395.60104
[6] A. A. Mogulskii, Local theorems for arithmetic compound renewal processes when Cramer’s condition holds, Sib. Èlektron. Mat. Izv., 16 (2019), pp. 21-41 (in Russian), https://doi.org/10.33048/semi.2019.16.002. · Zbl 1422.60153
[7] A. A. Mogul’skii and E. I. Prokopenko, Local theorems for arithmetic multi-dimensional compound renewal processes under the Cramér condition, Mat. Tr., 22 (2019), pp. 106-133, https://doi.org/10.33048/mattrudy.2019.22.207. · Zbl 1492.60246
[8] G. A. Bakay and A. V. Shklyaev, Large deviations of generalized renewal process, Discrete Math. Appl., 30 (2020), pp. 215-241, https://doi.org/10.1515/dma-2020-0020. · Zbl 1456.60233
[9] A. A. Borovkov, Asymptotic Analysis of Random Walks. Light-Tailed Distributions, Encyclopedia Math. Appl. 176, Cambridge Univ. Press, Cambridge, 2020, https://doi.org/10.1017/9781139871303. · Zbl 1444.60002
[10] A. A. Borovkov and A. A. Mogulskii, On large and superlarge deviations of sums of independent random vectors under Cramér’s condition I, Theory Probab. Appl., 51 (2007), pp. 227-255, https://doi.org/10.1137/S0040585X9798230X. · Zbl 1137.60011
[11] A. A. Borovkov and A. A. Mogul’skii, The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks, Siberian Math. J., 37 (1996), pp. 647-682, https://doi.org/10.1007/BF02104660. · Zbl 0878.60023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.