Zudilin, Wadim \((q)\)-supercongruences hit again. (English) Zbl 1472.11029 Hardy-Ramanujan J. 43, 46-55 (2020). Summary: Using an intrinsic \(q\)-hypergeometric strategy, we generalise Dwork-type congruences \(H(p^{s+1})/H(p^s)\equiv H(p^s)/H(p^{s-1}) \pmod{p^3}\) for \(s=1,2,\ldots\) and \(p\) a prime, when \(H(N)\) are truncated hypergeometric sums corresponding to the periods of rigid Calabi-Yau threefolds. MSC: 11A07 Congruences; primitive roots; residue systems 11B65 Binomial coefficients; factorials; \(q\)-identities 11F33 Congruences for modular and \(p\)-adic modular forms 33C20 Generalized hypergeometric series, \({}_pF_q\) 33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\) Keywords:hypergeometric sum; Ramanujan’s mathematics; supercongruence; \(q\)-congruence; creative microscoping; modular form; rigid Calabi-Yau threefold PDF BibTeX XML Cite \textit{W. Zudilin}, Hardy-Ramanujan J. 43, 46--55 (2020; Zbl 1472.11029) Full Text: arXiv Link OpenURL