Abtahi, Fatemeh; Kamali, Zeinab; Keyshams, Zahra On the Schur-Horn problem. (English) Zbl 1472.42041 Rocky Mt. J. Math. 51, No. 4, 1157-1170 (2021). Summary: Let \(\mathcal{H}\) be a separable Hilbert space. Recently, the concept of \(K\)-\(g\)-frame was introduced as a special generalization of \(g\)-Bessel sequences. In this paper, we point out some gaps in the proof of some existent results concerning \(K\)-\(g\)-frame. We present examples to indicate that these results are not necessarily valid. Then we remove the gaps and provide some desired conclusions. In this respect, we deal with Schur-Horn problem, which characterizes sequences \(\{\parallel f_n \parallel^2\}_{n = 1}^\infty \), for all frames \(\{f_n\}_{n = 1}^\infty\) with the same frame operator. We introduce the concept of synthesis related frames. Finally, as the main result, we investigate around Schur-Horn problem, for the case where \(\mathcal{H}\) is finite dimensional. In fact, we prove that two frames have the same frame operator if and only if they are synthesis related. Cited in 1 Document MSC: 42C15 General harmonic expansions, frames 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces Keywords:frame; \(K\)-frame; \(K\)-\(g\)-frame; Schur-Horn problem; synthesis operator; unitary operator × Cite Format Result Cite Review PDF References: [1] R. Balan, M. Begué, J. J. Benedetto, W. Czaja, and K. A. Okoudjou (editors), Excursions in harmonic analysis, vol. 4, Springer, 2015. [2] P. G. Casazza, “The art of frame theory”, Taiwanese J. Math. 4:2 (2000), 129-201. · Zbl 0966.42022 · doi:10.11650/twjm/1500407227 [3] P. G. Casazza and G. Kutyniok (editors), \(F inite frames \), Springer, 2013. · Zbl 1257.42001 · doi:10.1007/978-0-8176-8373-3 [4] P. G. Casazza and M. T. Leon, “Existence and construction of finite frames with a given frame operator”, Int. J. Pure Appl. Math. 63:2 (2010), 149-157. · Zbl 1225.42021 [5] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003. · Zbl 1017.42022 [6] O. Christensen, An introduction to frames and Riesz bases, 2nd ed., Springer, 2016. · Zbl 1348.42033 · doi:10.1007/978-3-319-25613-9 [7] C. K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications 1, Academic Press, Boston, 1992. · Zbl 0925.42016 [8] I. Daubechies, \(T\)en lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992. · Zbl 0776.42018 · doi:10.1137/1.9781611970104 [9] I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions”, J. Math. Phys. 27:5 (1986), 1271- 1283. · Zbl 0608.46014 · doi:10.1063/1.527388 [10] R. G. Douglas, “On majorization, factorization, and range inclusion of operators on Hilbert space”, Proc. Amer. Math. Soc. 17 (1966), 413-415. · Zbl 0146.12503 · doi:10.2307/2035178 [11] R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc. 72 (1952), 341-366. · Zbl 0049.32401 · doi:10.2307/1990760 [12] P. Găvruţa, “On some identities and inequalities for frames in Hilbert spaces”, J. Math. Anal. Appl. 321:1 (2006), 469-478. · Zbl 1119.42011 · doi:10.1016/j.jmaa.2005.07.080 [13] L. Găvruţa, “Frames for operators”, Appl. Comput. Harmon. Anal. 32:1 (2012), 139-144. · Zbl 1230.42038 · doi:10.1016/j.acha.2011.07.006 [14] L. Găvruţa, “Atomic decompositions for operators in reproducing kernel Hilbert spaces”, Math. Rep. \[Bucur. 17(67):3 (2015), 303-314\]. · Zbl 1374.42057 [15] Y. Huang and S. Shi, “New constructions of \[K\]-g-frames”, Results Math. 73:4 (2018), Paper No. 162, 13. · Zbl 1404.42057 · doi:10.1007/s00025-018-0924-4 [16] J. Kovačević and A. Chebira, “An introduction to frames”, Found. Trends Signal Process. 2:1 (2008), 1-94. · Zbl 1155.94001 · doi:10.1561/2000000006 [17] W. Sun, “\[G\]-frames and \[g\]-Riesz bases”, J. Math. Anal. Appl. 322:1 (2006), 437-452. · Zbl 1129.42017 · doi:10.1016/j.jmaa.2005.09.039 [18] Y. Zhou and Y. C. Zhu, “\[K\]-g-frames and dual g-frames for closed subspaces”, Acta Math. Sinica (\[Chin. Ser.) 56\]:5 (2013), 799-806 · Zbl 1299.42109 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.