Andrieu, Christophe; Durmus, Alain; Nüsken, Nikolas; Roussel, Julien Hypocoercivity of piecewise deterministic Markov process-Monte Carlo. (English) Zbl 1476.60124 Ann. Appl. Probab. 31, No. 5, 2478-2517 (2021). Summary: In this work, we establish \(\mathrm{L}^2\)-exponential convergence for a broad class of piecewise deterministic Markov processes recently proposed in the context of Markov process Monte Carlo methods and covering in particular the randomized Hamiltonian Monte Carlo [J. Dolbeault et al., Trans. Am. Math. Soc. 367, No. 6, 3807–3828 (2015; Zbl 1342.82115); N. Bou-Rabee and J. M. Sanz-Serna, Ann. Appl. Probab. 27, No. 4, 2159–2194 (2017; Zbl 1373.60129)], the zig-zag process [J. Bierkens et al., Ann. Stat. 47, No. 3, 1288–1320 (2019; Zbl 1417.65008)] and the bouncy particle Sampler [E. A. J. F. Peters and G. de With, “Rejection-free Monte Carlo sampling for general potentials”, Phys. Rev. E 85, Article ID 026703, 5 p. (2012; doi:10.1080/00031305.2017.1419145); A. Bouchard-Côté et al., J. Am. Stat. Assoc. 113, No. 522, 855–867 (2018; Zbl 1398.60084)]. The kernel of the symmetric part of the generator of such processes is nontrivial, and we follow the ideas recently introduced in [J. Dolbeault et al., C. R., Math., Acad. Sci. Paris 347, No. 9–10, 511–516 (2009; Zbl 1177.35054); Dolbeault 2015, loc. cit.] to develop a rigorous framework for hypocoercivity in a fairly general and unifying set-up, while deriving tractable estimates of the constants involved in terms of the parameters of the dynamics. As a by-product we characterize the scaling properties of these algorithms with respect to the dimension of classes of problems, therefore providing some theoretical evidence to support their practical relevance. Cited in 1 ReviewCited in 21 Documents MSC: 60J22 Computational methods in Markov chains 60J25 Continuous-time Markov processes on general state spaces 65C40 Numerical analysis or methods applied to Markov chains Keywords:geometric convergence; hypoellipticity; PDMCMC Citations:Zbl 1342.82115; Zbl 1373.60129; Zbl 1417.65008; Zbl 1398.60084; Zbl 1177.35054 Software:BayesDA × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Achleitner, F., Arnold, A. and Carlen, E. A. (2016). On linear hypocoercive BGK models. In From Particle Systems to Partial Differential Equations. III. Springer Proc. Math. Stat. 162 1-37. Springer, Cham. · Zbl 1353.35113 · doi:10.1007/978-3-319-32144-8_1 [2] Andrieu, C. and Livingstone, S. (2021). Peskun-Tierney ordering for Markovian Monte Carlo: Beyond the reversible scenario. Ann. Statist. 49 1958-1981. · Zbl 1489.65005 · doi:10.1214/20-AOS2008 [3] Andrieu, C., Durmus, A., Nüsken, N. and Roussel, J. (2021). Supplement to “Hypocoercivity of piecewise deterministic Markov process-Monte Carlo.” https://doi.org/10.1214/20-AAP1653SUPP [4] Bakry, D., Barthe, F., Cattiaux, P. and Guillin, A. (2008). A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13 60-66. · Zbl 1186.26011 · doi:10.1214/ECP.v13-1352 [5] Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348. Springer, Cham. · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9 [6] Bhatnagar, P. L., Gross, E. P. and Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 511-525. · Zbl 0055.23609 [7] Bierkens, J., Fearnhead, P. and Roberts, G. (2019). The zig-zag process and super-efficient sampling for Bayesian analysis of big data. Ann. Statist. 47 1288-1320. · Zbl 1417.65008 · doi:10.1214/18-AOS1715 [8] Bierkens, J., Kamatani, K. and Roberts, G. O. (2018). High-dimensional scaling limits of piecewise deterministic sampling algorithms. ArXiv e-prints. [9] Bierkens, J., Roberts, G. O. and Zitt, P.-A. (2019). Ergodicity of the zigzag process. Ann. Appl. Probab. 29 2266-2301. · Zbl 1467.60020 · doi:10.1214/18-AAP1453 [10] Bobkov, S. G. (2003). Spectral gap and concentration for some spherically symmetric probability measures. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 1807 37-43. Springer, Berlin. · Zbl 1052.60003 · doi:10.1007/978-3-540-36428-3_4 [11] Bonnefont, M., Joulin, A. and Ma, Y. (2016). Spectral gap for spherically symmetric log-concave probability measures, and beyond. J. Funct. Anal. 270 2456-2482. · Zbl 1347.60114 · doi:10.1016/j.jfa.2016.02.007 [12] Bou-Rabee, N. and Sanz-Serna, J. M. (2017). Randomized Hamiltonian Monte Carlo. Ann. Appl. Probab. 27 2159-2194. · Zbl 1373.60129 · doi:10.1214/16-AAP1255 [13] Bouchard-Côté, A., Vollmer, S. J. and Doucet, A. (2018). The bouncy particle sampler: A nonreversible rejection-free Markov chain Monte Carlo method. J. Amer. Statist. Assoc. 113 855-867. · Zbl 1398.60084 · doi:10.1080/01621459.2017.1294075 [14] Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C. and Schmeiser, C. (2020). Hypocoercivity without confinement. Pure Appl. Funct. Anal. 2 203-232. · Zbl 1448.82035 · doi:10.2140/paa.2020.2.203 [15] Bouin, E., Hoffmann, F. and Mouhot, C. (2017). Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt. SIAM J. Math. Anal. 49 3233-3251. · Zbl 1379.35318 · doi:10.1137/16M1077490 [16] Brosse, N., Durmus, A., Moulines, É. and Sabanis, S. (2019). The tamed unadjusted Langevin algorithm. Stochastic Process. Appl. 129 3638-3663. · Zbl 07107458 · doi:10.1016/j.spa.2018.10.002 [17] Davies, E. B. (1995). Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics 42. Cambridge Univ. Press, Cambridge. · Zbl 0893.47004 · doi:10.1017/CBO9780511623721 [18] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models (with discussion). J. Roy. Statist. Soc. Ser. B 46 353-388. · Zbl 0565.60070 [19] Davis, M. H. A. (1993). Markov Models and Optimization. Monographs on Statistics and Applied Probability 49. CRC Press, London. · Zbl 0780.60002 · doi:10.1007/978-1-4899-4483-2 [20] Deligiannidis, G., Bouchard-Côté, A. and Doucet, A. (2019). Exponential ergodicity of the bouncy particle sampler. Ann. Statist. 47 1268-1287. · Zbl 1467.60057 · doi:10.1214/18-AOS1714 [21] Deligiannidis, G., Paulin, D. and Doucet, A. (2018). Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates. Preprint. Available at arXiv:1808.04299. [22] Dolbeault, J., Mouhot, C. and Schmeiser, C. (2009). Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347 511-516. · Zbl 1177.35054 · doi:10.1016/j.crma.2009.02.025 [23] Dolbeault, J., Mouhot, C. and Schmeiser, C. (2015). Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc. 367 3807-3828. · Zbl 1342.82115 · doi:10.1090/S0002-9947-2015-06012-7 [24] Douc, R., Moulines, E., Priouret, P. and Soulier, P. (2018). Markov Chains. Springer Series in Operations Research and Financial Engineering. Springer, Cham. · Zbl 1429.60002 · doi:10.1007/978-3-319-97704-1 [25] Duane, S., Kennedy, A. D., Pendleton, B. J. and Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195 216-222. · doi:10.1016/0370-2693(87)91197-x [26] Durmus, A., Guillin, A. and Monmarché, P. (2018). Piecewise deterministic Markov processes and their invariant measure. ArXiv e-prints. [27] Durmus, A., Guillin, A. and Monmarché, P. (2020). Geometric ergodicity of the bouncy particle sampler. Ann. Appl. Probab. 30 2069-2098. · Zbl 1472.60118 · doi:10.1214/19-AAP1552 [28] Eckmann, J.-P. and Hairer, M. (2003). Spectral properties of hypoelliptic operators. Comm. Math. Phys. 235 233-253. · Zbl 1040.35016 · doi:10.1007/s00220-003-0805-9 [29] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. · Zbl 0592.60049 · doi:10.1002/9780470316658 [30] Evans, J. (2021). Hypocoercivity in phi-entropy for the linear relaxation Boltzmann equation on the torus. SIAM J. Math. Anal. 53 1357-1378. · Zbl 1462.35234 · doi:10.1137/19M1277631 [31] Faggionato, A., Gabrielli, D. and Ribezzi Crivellari, M. (2009). Non-equilibrium thermodynamics of piecewise deterministic Markov processes. J. Stat. Phys. 137 259-304. · Zbl 1179.82108 · doi:10.1007/s10955-009-9850-x [32] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014). Bayesian Data Analysis, 3rd ed. Texts in Statistical Science Series. CRC Press, Boca Raton, FL. · Zbl 1279.62004 [33] Grothaus, M. and Mertin, M. (2020). Hypocoercivity of langevin-type dynamics on abstract smooth manifolds. [34] Grothaus, M. and Stilgenbauer, P. (2014). Hypocoercivity for Kolmogorov backward evolution equations and applications. J. Funct. Anal. 267 3515-3556. · Zbl 1347.37007 · doi:10.1016/j.jfa.2014.08.019 [35] Grothaus, M. and Stilgenbauer, P. (2015). A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions. Integral Equations Operator Theory 83 331-379. · Zbl 1361.37007 · doi:10.1007/s00020-015-2254-1 [36] Grothaus, M. and Stilgenbauer, P. (2016). Hilbert space hypocoercivity for the Langevin dynamics revisited. Methods Funct. Anal. Topology 22 152-168. · Zbl 1363.47089 [37] Grothaus, M. and Wang, F.-Y. (2019). Weak Poincaré inequalities for convergence rate of degenerate diffusion processes. Ann. Probab. 47 2930-2952. · Zbl 1472.60096 · doi:10.1214/18-AOP1328 [38] Han-Kwan, D. and Léautaud, M. (2015). Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium. Ann. PDE 1 Art. 3, 84. · Zbl 1398.35142 · doi:10.1007/s40818-015-0003-z [39] Hérau, F. (2006). Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. 46 349-359. · Zbl 1096.35019 [40] Hérau, F. and Nier, F. (2004). Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171 151-218. · Zbl 1139.82323 · doi:10.1007/s00205-003-0276-3 [41] Holley, R. and Stroock, D. (1987). Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46 1159-1194. · Zbl 0682.60109 · doi:10.1007/BF01011161 [42] Hörmander, L. (1967). Hypoelliptic second order differential equations. Acta Math. 119 147-171. · Zbl 0156.10701 · doi:10.1007/BF02392081 [43] Liu, J. S. (2008). Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. Springer, New York. · Zbl 1132.65003 [44] Meyn, S. and Tweedie, R. L. (2012). Markov Chains and Stochastic Stability. Springer, New York. [45] Michel, M., Kapfer, S. C. and Krauth, W. (2014). Generalized event-chain Monte Carlo: Constructing rejection-free global-balance algorithms from infinitesimal steps. J. Chem. Phys. 140 054116. [46] Michel, M. and Sénécal, S. (2017). Forward event-chain Monte Carlo: A general rejection-free and irreversible Markov chain simulation method. Preprint. Available at arXiv:1702.08397. [47] Monmarché, P. (2021). A note on Fisher information hypocoercive decay for the linear Boltzmann equation. Anal. Math. Phys. 11 Paper No. 1, 11. · Zbl 1470.35251 · doi:10.1007/s13324-020-00437-5 [48] Mouhot, C. and Neumann, L. (2006). Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19 969-998. · Zbl 1169.82306 · doi:10.1088/0951-7715/19/4/011 [49] O’Donnell, R. (2014). Analysis of Boolean Functions. Cambridge Univ. Press, New York. · Zbl 1336.94096 · doi:10.1017/CBO9781139814782 [50] Pardoux, E. and Veretennikov, A. Y. (2001). On the Poisson equation and diffusion approximation. I. Ann. Probab. 29 1061-1085. · Zbl 1029.60053 · doi:10.1214/aop/1015345596 [51] Pedersen, G. K. (1989). Analysis Now. Graduate Texts in Mathematics 118. Springer, New York. · Zbl 0668.46002 · doi:10.1007/978-1-4612-1007-8 [52] Persson, A. (1960). Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8 143-153. · Zbl 0145.14901 · doi:10.7146/math.scand.a-10602 [53] Peters, E. A. J. F. and de With, G. (2012). Rejection-free Monte Carlo sampling for general potentials. Phys. Rev. E 85 026703. [54] Redon, S., Stoltz, G. and Trstanova, Z. (2016). Error analysis of modified Langevin dynamics. J. Stat. Phys. 164 735-771. · Zbl 1348.82066 · doi:10.1007/s10955-016-1544-6 [55] Reed, M. and Simon, B. (1972). Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York. · Zbl 0242.46001 [56] Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, New York. · Zbl 0935.62005 · doi:10.1007/978-1-4757-3071-5 [57] Vanetti, P., Bouchard-Côté, A., Deligiannidis, G. and Doucet, A. (2017). Piecewise deterministic Markov chain Monte Carlo. Preprint. Available at arXiv:1707.05296. [58] Villani, C. (2006). Hypocoercive diffusion operators. In International Congress of Mathematicians. Vol. III 473-498. Eur. Math. Soc., Zürich. · Zbl 1130.35027 [59] Villani, C. (2009). Hypocoercivity. Mem. Amer. Math. Soc. 202 iv+141. · Zbl 1197.35004 · doi:10.1090/S0065-9266-09-00567-5 [60] Wu, C. and Robert, C. P. (2017). Generalized bouncy particle sampler. Preprint. Available at arXiv:1706.04781. [61] Yoshida, K. (1980). Functional Analysis. Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen Mit Besonderer Berücksichtigung der Anwendungsgebiete 123, 6th ed. Springer, Berlin This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.