Hadj-Amar, Beniamino; Finkenstädt, Bärbel; Fiecas, Mark; Huckstepp, Robert Identifying the recurrence of sleep apnea using a harmonic hidden Markov model. (English) Zbl 1478.62326 Ann. Appl. Stat. 15, No. 3, 1171-1193 (2021). Summary: We propose to model time-varying periodic and oscillatory processes by means of a hidden Markov model where the states are defined through the spectral properties of a periodic regime. The number of states is unknown along with the relevant periodicities, the role and number of which may vary across states. We address this inference problem by a Bayesian nonparametric hidden Markov model, assuming a sticky hierarchical Dirichlet process for the switching dynamics between different states while the periodicities characterizing each state are explored by means of a transdimensional Markov chain Monte Carlo sampling step. We develop the full Bayesian inference algorithm and illustrate the use of our proposed methodology for different simulation studies as well as an application related to respiratory research which focuses on the detection of apnea instances in human breathing traces. Cited in 3 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 62M05 Markov processes: estimation; hidden Markov models 62G05 Nonparametric estimation Keywords:sleep apnea; time-varying frequencies; reversible-jump MCMC; Bayesian nonparametrics; hierarchical Dirichlet process Software:BayesDA; astsa; Label.switching; tsbridge; BayesSpec; PRMLT × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Adak, S. (1998). Time-dependent spectral analysis of nonstationary time series. J. Amer. Statist. Assoc. 93 1488-1501. · Zbl 1064.62565 · doi:10.2307/2670062 [2] Albert, J. H. and Chib, S. (1993). Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. J. Bus. Econom. Statist. 11 1-15. [3] Aldous, D. J. (1985). Exchangeability and related topics. In École d’été de Probabilités de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 1-198. Springer, Berlin. · Zbl 0562.60042 · doi:10.1007/BFb0099421 [4] Ancoli-Israel, S., Klauber, M. R., Butters, N., Parker, L. and Kripke, D. F. (1991). Dementia in institutionalized elderly: Relation to sleep apnea. J. Amer. Geriatr. Soc. 39 258-263. [5] Andrieu, C. and Doucet, A. (1999). Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Trans. Signal Process. 47 2667-2676. [6] Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 269-342. · Zbl 1411.65020 · doi:10.1111/j.1467-9868.2009.00736.x [7] Baum, L. E. and Eagon, J. A. (1967). An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73 360-363. · Zbl 0157.11101 · doi:10.1090/S0002-9904-1967-11751-8 [8] Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 1554-1563. · Zbl 0144.40902 · doi:10.1214/aoms/1177699147 [9] Beal, M. J., Ghahramani, Z. and Rasmussen, C. E. (2002). The infinite hidden Markov model. In Advances in Neural Information Processing Systems 577-584. [10] Bernardo, J.-M. and Smith, A. F. M. (2009). Bayesian Theory. Wiley, Chichester. · doi:10.1002/9780470316870 [11] Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R. M., Quan, S. F., Troester, M. T. and Vaughn, B. V. (2017). AASM scoring manual updates for 2017 (version 2.4). J. Clin. Sleep. Med. 13 665-666. · doi:10.5664/jcsm.6576 [12] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York. · Zbl 1107.68072 · doi:10.1007/978-0-387-45528-0 [13] Bruce, S. A., Hall, M. H., Buysse, D. J. and Krafty, R. T. (2018). Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series. Biometrics 74 260-269. · Zbl 1415.62086 · doi:10.1111/biom.12719 [14] Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer Series in Statistics. Springer, New York. · Zbl 1080.62065 [15] Celeux, G., Hurn, M. and Robert, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. J. Amer. Statist. Assoc. 95 957-970. · Zbl 0999.62020 · doi:10.2307/2669477 [16] Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge. [17] Cooke, J. R., Ayalon, L., Palmer, B. W., Loredo, J. S., Corey-Bloom, J., Natarajan, L., Liu, L. and Ancoli-Israel, S. (2009). Sustained use of CPAP slows deterioration of cognition, sleep, and mood in patients with Alzheimer’s disease and obstructive sleep apnea: A preliminary study. J. Clin. Sleep. Med. 5 305-309. [18] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25 1-37. · Zbl 0871.62080 · doi:10.1214/aos/1034276620 [19] Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2006). Structural break estimation for nonstationary time series models. J. Amer. Statist. Assoc. 101 223-239. · Zbl 1118.62359 · doi:10.1198/016214505000000745 [20] Dewan, N. A., Nieto, F. J. and Somers, V. K. (2015). Intermittent hypoxemia and OSA: Implications for comorbidities. Chest 147 266-274. · doi:10.1378/chest.14-0500 [21] Ephraim, Y. and Merhav, N. (2002). Hidden Markov processes. IEEE Trans. Inf. Theory 48 1518-1569. · Zbl 1061.94560 · doi:10.1109/TIT.2002.1003838 [22] Fox, E. B., Sudderth, E. B., Jordan, M. I. and Willsky, A. S. (2011). A sticky HDP-HMM with application to speaker diarization. Ann. Appl. Stat. 5 1020-1056. · Zbl 1232.62077 · doi:10.1214/10-AOAS395 [23] Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer Series in Statistics. Springer, New York. · Zbl 1108.62002 [24] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014). Bayesian Data Analysis, 3rd ed. Texts in Statistical Science Series. CRC Press, Boca Raton, FL. · Zbl 1279.62004 [25] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732. · Zbl 0861.62023 [26] Guédon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. J. Comput. Graph. Statist. 12 604-639. · doi:10.1198/1061860032030 [27] Hadj-Amar, B., Rand, B. F., Fiecas, M., Lévi, F. and Huckstepp, R. (2020). Bayesian model search for nonstationary periodic time series. J. Amer. Statist. Assoc. 115 1320-1335. · Zbl 1441.62245 · doi:10.1080/01621459.2019.1623043 [28] Hadj-Amar, B., Finkenstädt, B., Fiecas, M. and Huckstepp, R. (2021). Supplement to “Identifying the recurrence of sleep apnea using a harmonic hidden Markov model.” https://doi.org/10.1214/21-AOAS1455SUPP [29] Heinzer, R., Vat, S., Marques-Vidal, P., Marti-Soler, H., Andries, D., Tobback, N., Mooser, V., Preisig, M., Malhotra, A. et al. (2015). Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. The Lancet Respiratory Medicine 3 310-318. [30] Huang, Q., Cohen, D., Komarzynski, S., Li, X.-M., Innominato, P., Lévi, F. and Finkenstädt, B. (2018). Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data. J. R. Soc. Interface 15 20170885. [31] Hurn, M., Justel, A. and Robert, C. P. (2003). Estimating mixtures of regressions. J. Comput. Graph. Statist. 12 55-79. · doi:10.1198/1061860031329 [32] Ignatov, T. (1982). A constant arising in the asymptotic theory of symmetric groups, and Poisson-Dirichlet measures. Theory Probab. Appl. 27 136-147. · Zbl 0559.60046 [33] Ishwaran, H. and Zarepour, M. (2002). Exact and approximate sum representations for the Dirichlet process. Canad. J. Statist. 30 269-283. · Zbl 1035.60048 · doi:10.2307/3315951 [34] Jasra, A., Holmes, C. C. and Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci. 20 50-67. · Zbl 1100.62032 · doi:10.1214/088342305000000016 [35] Jasra, A., Stephens, D. A. and Holmes, C. C. (2007). On population-based simulation for static inference. Stat. Comput. 17 263-279. · doi:10.1007/s11222-007-9028-9 [36] Jasra, A., Doucet, A., Stephens, D. A. and Holmes, C. C. (2008). Interacting sequential Monte Carlo samplers for trans-dimensional simulation. Comput. Statist. Data Anal. 52 1765-1791. · Zbl 1452.62077 · doi:10.1016/j.csda.2007.09.009 [37] Johnson, M. J. and Willsky, A. S. (2013). Bayesian nonparametric hidden semi-Markov models. J. Mach. Learn. Res. 14 673-701. · Zbl 1320.62050 [38] Juang, B.-H. and Rabiner, L. (1985). Mixture autoregressive hidden Markov models for speech signals. IEEE Trans. Acoust. Speech Signal Process. 33 1404-1413. [39] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773-795. · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572 [40] Kivinen, J. J., Sudderth, E. B. and Jordan, M. I. (2007). Learning multiscale representations of natural scenes using Dirichlet processes. In 2007 IEEE 11th International Conference on Computer Vision 1-8. IEEE, New York. [41] Komarzynski, S., Huang, Q., Innominato, P. F., Maurice, M., Arbaud, A., Beau, J., Bouchahda, M., Ulusakarya, A., Beaumatin, N. et al. (2018). Relevance of a mobile Internet platform for capturing inter- and intrasubject variabilities in circadian coordination during daily routine: Pilot study. J. Med. Internet Res. 20 e204. · doi:10.2196/jmir.9779 [42] Krauchi, K. and Wirz-Justice, A. (1994). Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am. J. Physiol., Regul. Integr. Comp. Physiol. 267 R819-R829. [43] Krogh, A., Brown, M., Mian, I. S., Sjölander, K. and Haussler, D. (1994). Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol. 235 1501-1531. [44] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Stat. 22 79-86. · Zbl 0042.38403 · doi:10.1214/aoms/1177729694 [45] Langrock, R., Swihart, B. J., Caffo, B. S., Punjabi, N. M. and Crainiceanu, C. M. (2013). Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms. Stat. Med. 32 3342-3356. · doi:10.1002/sim.5747 [46] Liang, F. and Wong, W. H. (2001). Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Amer. Statist. Assoc. 96 653-666. · Zbl 1017.62022 · doi:10.1198/016214501753168325 [47] Malik, M. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Annals of Noninvasive Electrocardiology 1 151-181. [48] Marin, J.-M., Mengersen, K. and Robert, C. P. (2005). Bayesian modelling and inference on mixtures of distributions. In Bayesian Thinking: Modeling and Computation. Handbook of Statist. 25 459-507. Elsevier/North-Holland, Amsterdam. · Zbl 1136.62012 · doi:10.1016/S0169-7161(05)25016-2 [49] Meng, X.-L. and Schilling, S. (2002). Warp bridge sampling. J. Comput. Graph. Statist. 11 552-586. · doi:10.1198/106186002457 [50] Meng, X.-L. and Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statist. Sinica 6 831-860. · Zbl 0857.62017 [51] Neal, R. M. (2003). Slice sampling. Ann. Statist. 31 705-767. · Zbl 1051.65007 · doi:10.1214/aos/1056562461 [52] Ombao, H. C., Raz, J. A., von Sachs, R. and Malow, B. A. (2001). Automatic statistical analysis of bivariate nonstationary time series. J. Amer. Statist. Assoc. 96 543-560. · Zbl 1018.62080 · doi:10.1198/016214501753168244 [53] Papastamoulis, P. (2016). Label.switching: An R package for dealing with the label switching problem in MCMC outputs. Journal of Statistical Software, Code Snippets 69 1-24. [54] Papastamoulis, P. and Iliopoulos, G. (2010). An artificial allocations based solution to the label switching problem in Bayesian analysis of mixtures of distributions. J. Comput. Graph. Statist. 19 313-331. · doi:10.1198/jcgs.2010.09008 [55] Paz, J. C. and West, M. P. (2013). Acute Care Handbook for Physical Therapists. Elsevier Health Sciences, Elsevier. [56] Peker, Y., Hedner, J., Norum, J., Kraiczi, H. and Carlson, J. (2002). Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: A 7-year follow-up. Am. J. Respir. Crit. Care Med. 166 159-165. [57] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21-39. · Zbl 0741.60037 · doi:10.1007/BF01205234 [58] Pitman, J. (1996). Blackwell-Macqueen urn scheme. Statistics, Probability, and Game Theory: Papers in Honor of David Blackwell 30 245. · Zbl 0996.60500 [59] Pitman, J. (2002). Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformation of an interval partition. Combin. Probab. Comput. 11 501-514. · Zbl 1011.60051 · doi:10.1017/S0963548302005163 [60] Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes.(With discussion). J. Roy. Statist. Soc. Ser. B 27 204-237. · Zbl 0144.41001 [61] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 257-286. [62] Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts. In Advances in Neural Information Processing Systems 881-888. [63] Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 195-239. · Zbl 0536.62021 · doi:10.1137/1026034 [64] Rodríguez, C. E. and Walker, S. G. (2014). Label switching in Bayesian mixture models: Deterministic relabeling strategies. J. Comput. Graph. Statist. 23 25-45. · doi:10.1080/10618600.2012.735624 [65] Rosen, O., Stoffer, D. S. and Wood, S. (2009). Local spectral analysis via a Bayesian mixture of smoothing splines. J. Amer. Statist. Assoc. 104 249-262. · Zbl 1388.62268 · doi:10.1198/jasa.2009.0118 [66] Rosen, O., Wood, S. and Stoffer, D. S. (2012). AdaptSPEC: Adaptive spectral estimation for nonstationary time series. J. Amer. Statist. Assoc. 107 1575-1589. · Zbl 1258.62093 · doi:10.1080/01621459.2012.716340 [67] Ruehland, W. R., Rochford, P. D., O’Donoghue, F. J., Pierce, R. J., Singh, P. and Thornton, A. T. (2009). The new AASM criteria for scoring hypopneas: Impact on the apnea hypopnea index. Sleep 32 150-157. [68] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639-650. · Zbl 0823.62007 [69] Shumway, R. H. and Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples, 4th ed. Springer Texts in Statistics. Springer, Cham. · Zbl 1367.62004 · doi:10.1007/978-3-319-52452-8 [70] Stephens, M. (2000). Dealing with label switching in mixture models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 795-809. · Zbl 0957.62020 · doi:10.1111/1467-9868.00265 [71] Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2006). Hierarchical Dirichlet processes. J. Amer. Statist. Assoc. 101 1566-1581. · Zbl 1171.62349 · doi:10.1198/016214506000000302 [72] Teran-Santos, J., Jimenez-Gomez, A., Cordero-Guevara, J. and Burgos-Santander, C. G. (1999). The association between sleep apnea and the risk of traffic accidents. N. Engl. J. Med. 340 847-851. [73] Tripuraneni, N., Gu, S. S., Ge, H. and Ghahramani, Z. (2015). Particle Gibbs for infinite hidden Markov models. In Advances in Neural Information Processing Systems 2395-2403. [74] Van Gael, J., Saatci, Y., Teh, Y. W. and Ghahramani, Z. (2008). Beam sampling for the infinite hidden Markov model. In Proceedings of the 25th International Conference on Machine Learning 1088-1095. ACM, New York. [75] Walker, S. G. (2010). Bayesian nonparametric methods: Motivation and ideas. In Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math. 28 22-34. Cambridge Univ. Press, Cambridge. · doi:10.1017/CBO9780511802478.002 [76] West, M., Prado, R. and Krystal, A. D. (1999). Evaluation and comparison of EEG traces: Latent structure in nonstationary time series. J. Amer. Statist. Assoc. 94 375-387. [77] Whittle, P. (1957). Curve and periodogram smoothing. J. Roy. Statist. Soc. Ser. B 19 38-47 (discussion 47-63). · Zbl 0089.35701 [78] Yaggi, H. K., Concato, J., Kernan, W. N., Lichtman, J. H., Brass, L. M. and Mohsenin, V. (2005). Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 353 2034-2041. [79] Yaghouby, F. and Sunderam, S. (2015). Quasi-supervised scoring of human sleep in polysomnograms using augmented input variables. Comput. Biol. Med. 59 54-63. · doi:10.1016/j.compbiomed.2015.01.012 [80] Yau, C., Papaspiliopoulos, O., Roberts, G. O. and Holmes, C. (2011). Bayesian non-parametric hidden Markov models with applications in genomics. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 37-57. · Zbl 1411.62247 · doi:10.1111/j.1467-9868.2010.00756.x [81] Young, T., Peppard, P. E. and Gottlieb, D. J. (2002). Epidemiology of obstructive sleep apnea: A population health perspective. Am. J. Respir. Crit. Care Med. 165 1217-1239. [82] Yu, S.-Z. (2010). Hidden semi-Markov models. Artificial Intelligence 174 215-243. · Zbl 1344.68181 · doi:10.1016/j.artint.2009.11.011 [83] Zhou, Y., Johansen, A. M. and Aston, J. A. D. (2016). Toward automatic model comparison: An adaptive sequential Monte Carlo approach. J. Comput. Graph. Statist. 25 701-726 · doi:10.1080/10618600.2015.1060885 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.