×

Estrogen receptor expression on breast cancer patients’ survival under shape-restricted Cox regression model. (English) Zbl 1478.62340

Summary: For certain subtypes of breast cancer, study findings show that their level of estrogen receptor expression is associated with their risk of cancer death and also suggest a nonlinear effect on the hazard of death. A flexible form of the proportional hazards model, \(\lambda (t|x,z)=\lambda (t)\exp (z^T \beta)q(x)\), is desirable to facilitate a rich class of covariate effect on a survival outcome to provide meaningful insight, where the functional form of \(q(x)\) is not specified except for its shape. Prior biologic knowledge on the shape of the underlying distribution of the covariate effect in regression models can be used to enhance statistical inference. Despite recent progress, major challenges remain for the semiparametric shape-restricted inference due to lack of practical and efficient computational algorithms to accomplish nonconvex optimization. We propose an alternative algorithm to maximize the full log-likelihood with two sets of parameters iteratively under monotone constraints. The first set consists of the nonparametric estimation of the monotone-restricted function \(q(x)\), while the second set includes estimating the baseline hazard function and other covariate coefficients. The iterative algorithm, in conjunction with the pool-adjacent-violators algorithm, makes the computation efficient and practical. The jackknife resampling effectively reduces the estimator bias, when sample size is small. Simulations show that the proposed method can accurately capture the underlying shape of \(q(x)\) and outperforms the estimators when \(q(x)\) in the Cox model is misspecified. We apply the method to model the effect of estrogen receptor on breast cancer patients’ survival.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62J05 Linear regression; mixed models
62G05 Nonparametric estimation
62N05 Reliability and life testing
Full Text: DOI

References:

[1] Ancukiewicz, M., Finkelstein, D. M. and Schoenfeld, D. A. (2003). Modelling the relationship between continuous covariates and clinical events using isotonic regression. Stat. Med. 22 3151-3159.
[2] Bertsekas, D. P. (1999). Nonlinear Programming, 2nd ed. Athena Scientific Optimization and Computation Series. Athena Scientific, Belmont, MA. · Zbl 1015.90077
[3] Breslow, N. E. (1972). Discussion of the paper by D. R. Cox. J. Roy. Statist. Soc. Ser. B 34 216-217.
[4] Chen, Y. and Samworth, R. J. (2016). Generalized additive and index models with shape constraints. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 729-754. · Zbl 1414.62153 · doi:10.1111/rssb.12137
[5] Chen, K., Guo, S., Sun, L. and Wang, J.-L. (2010). Global partial likelihood for nonparametric proportional hazards models. J. Amer. Statist. Assoc. 105 750-760. · Zbl 1392.62293 · doi:10.1198/jasa.2010.tm08636
[6] Chung, Y., Ivanova, A., Hudgens, M. G. and Fine, J. P. (2018). Partial likelihood estimation of isotonic proportional hazards models. Biometrika 105 133-148. · Zbl 07072398 · doi:10.1093/biomet/asx064
[7] Cox, D. R. (1975). Partial likelihood. Biometrika 62 269-276. · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269
[8] Cule, M., Samworth, R. and Stewart, M. (2010). Maximum likelihood estimation of a multi-dimensional log-concave density. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 545-607. · Zbl 1411.62055 · doi:10.1111/j.1467-9868.2010.00753.x
[9] Doss, C. R. and Wellner, J. A. (2016). Global rates of convergence of the MLEs of log-concave and \(s\)-concave densities. Ann. Statist. 44 954-981. · Zbl 1338.62101 · doi:10.1214/15-AOS1394
[10] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics 38. SIAM, Philadelphia, PA. · Zbl 0496.62036
[11] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1-22.
[12] Fujii, T., Kogawa, T., Dong, W., Sahin, A. A., Moulder, S., Litton, J. K., Tripathy, D., Iwamoto, T., Hunt, K. K. et al. (2017). Revisiting the definition of estrogen receptor positivity in HER2-negative primary breast cancer. Ann. Oncol. 28 2420-2428.
[13] Gorski, J., Pfeuffer, F. and Klamroth, K. (2007). Biconvex sets and optimization with biconvex functions: A survey and extensions. Math. Methods Oper. Res. 66 373-407. · Zbl 1146.90495 · doi:10.1007/s00186-007-0161-1
[14] Grambsch, P. M. and Therneau, T. M. (1994). Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81 515-526. · Zbl 0810.62096 · doi:10.1093/biomet/81.3.515
[15] Groeneboom, P. and Jongbloed, G. (2014). Nonparametric Estimation Under Shape Constraints: Estimators, Algorithms and Asymptotics. Cambridge Series in Statistical and Probabilistic Mathematics 38. Cambridge Univ. Press, New York. · Zbl 1338.62008 · doi:10.1017/CBO9781139020893
[16] Iwamoto, T., Booser, D., Valero, V., Murray, J. L., Koenig, K., Esteva, F. J., Ueno, N. T., Zhang, J., Shi, W. et al. (2012). Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1
[17] Lancaster, T. (2000). The incidental parameter problem since 1948. J. Econometrics 95 391-413. · Zbl 0967.62099 · doi:10.1016/S0304-4076(99)00044-5
[18] Miratrix, L. W., Wager, S. and Zubizarreta, J. R. (2018). Shape-constrained partial identification of a population mean under unknown probabilities of sample selection. Biometrika 105 103-114. · Zbl 07072396 · doi:10.1093/biomet/asx077
[19] Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449-465. · Zbl 0995.62033 · doi:10.2307/2669386
[20] Murray, T. A., Hobbs, B. P., Sargent, D. J. and Carlin, B. P. (2016). Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects. Bayesian Anal. 11 381-402. · Zbl 1357.62281 · doi:10.1214/15-BA954
[21] Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica 16 1-32. · Zbl 0034.07602 · doi:10.2307/1914288
[22] Nocedal, J. and Wright, S. J. (2006). Nonlinear Equations. Springer, Berlin.
[23] Qin, J., Deng, G., Ning, J., Yuan, A. and Shen, Y. (2021). Supplement to “Estrogen receptor expression on breast cancer patients’ survival under shape-restricted Cox regression model.” https://doi.org/10.1214/21-AOAS1446SUPP
[24] Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43 353-360. · Zbl 0074.14003 · doi:10.1093/biomet/43.3-4.353
[25] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, Chichester. · Zbl 0645.62028
[26] Shao, J. et al. (1989). A general theory for jackknife variance estimation. Ann. Statist. 17 1176-1197. · Zbl 0684.62034 · doi:10.1214/aos/1176347263
[27] Shao, J. and Tu, D. S. (1995). The Jackknife and Bootstrap. Springer Series in Statistics. Springer, New York. · Zbl 0947.62501 · doi:10.1007/978-1-4612-0795-5
[28] Tibshirani, R. and Hastie, T. (1987). Local likelihood estimation. J. Amer. Statist. Assoc. 82 559-567. · Zbl 0626.62041
[29] Yi, M., Huo, L., Koenig, K. B., Mittendorf, E. A., Meric-Bernstam, F., Kuerer, H. M., Bedrosian, I., Buzdar, A. U., Symmans, W. F. et al. (2014). Which threshold for ER positivity? A retrospective study based on 9639 patients. Ann. Oncol. 25 1004-1011.
[30] Zhou, M. (2016). Empirical Likelihood Method in Survival Analysis. Chapman & Hall/CRC Biostatistics Series. CRC Press, Boca Raton, FL · Zbl 1341.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.