Incorporation of micro-cracking and fibre bridging mechanisms in constitutive modelling of fibre reinforced concrete. (English) Zbl 1480.74273

Summary: The formation and propagation of cracks under progressive loading in fibre reinforce concrete (FRC) are significantly influenced by fibre bridging mechanisms. Cracking and fibre bridging, governed by the FRC constituents and their properties, are two coupled and interacting phenomena that significantly affect the ductility and transition from diffuse to localised deformation. Constitutive modelling of FRC is challenging due to the high inhomogeneity and complex transition of deformations stages rooted from the difference in responses of cracked and intact material volumes coupled with cohesive resistance and fibre bridging of a crack. In this paper, a new approach to constitutive modelling of FRC is developed by enriching the constitutive structure to accommodate different responses of the crack, intact material and fibres. The strain discontinuity caused by cracks is accounted for via an enriched strain field which facilitates the introduction of the two interacting mechanisms, cohesive cracking and fibre bridging, in the constitutive model. The transition from diffuse to localised deformation is controlled by the fibre volume content and local deformation, via the density of active cracks. It is demonstrated that the proposed constitutive model is capable of describing the transition from diffuse to localised deformation associated with different macro responses under different loading conditions.


74R10 Brittle fracture
Full Text: DOI


[1] Abdallah, S.; Fan, M.; Rees, D. W.A., Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres, Mater. Des., 112, 539-552 (2016)
[2] Abdul-Razzak, A. A.; Mohammed Ali, A. A., Modelling and numerical simulation of high strength fibre reinforced concrete corbels, Appl. Math. Model., 35, 2901-2915 (2011)
[3] Abdul-Razzak, A. A.; Mohammed Ali, A. A., Influence of cracked concrete models on the nonlinear analysis of high strength steel fibre reinforced concrete corbels, Compos. Struct., 93, 2277-2287 (2011)
[4] Abrishambaf, A.; Pimentel, M.; Nunes, S., Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites, Cem. Concr. Res., 97, 28-40 (2017)
[5] Alwan, J. M.; Naaman, A. E.; Guerrero, P., Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices, Concr. Sci. Eng., 1, 15-25 (1999)
[6] Barros, J. A.O.; Figueiras, J. A., Flexural behaviour of SFRC: testing and modelling, J. Mater. Civ. Eng., 11, 331-339 (1999)
[7] Beghini, A.; Bažant, Z. P.; Zhou, Y.; Gouirand, O.; Caner, F. C., Microplane model M5f for multiaxial behavior and fracture of fiber-reinforced concrete, J. Eng. Mech., 133, 66-75 (2007)
[8] Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R. N., Experimental evaluation of fiber reinforced concrete fracture properties, Compos. Part B Eng., 41, 17-24 (2010)
[9] Blanco, A.; Pujadas, P.; Cavalaro, S.; De La Fuente, A.; Aguado, A., Constitutive model for fibre reinforced concrete based on the Barcelona test, Cem. Concr. Compos., 53, 327-340 (2014)
[10] Caner, F. C.; Bažant, Z. P.; Wendner, R., Microplane model M7f for fiber reinforced concrete, Eng. Fract. Mech., 105, 41-57 (2013)
[11] Cox, B. N.; Marshall, D. B., Crack bridging in the fatigue of fibrous composites, Fatigue Fract. Eng. Mater. Struct., 14, 847-861 (1991)
[12] Cox, B. N.; Marshall, D. B., The determination of crack bridging forces, Int. J. Fract., 49, 159-176 (1991)
[13] Cox, B. N.; Marshall, D. B., The mechanics of matrix cracking in brittle-matrix fibre composites, Acta Mater., 33, 2013-2021 (1985)
[14] Cunha, V. M.C. F.; Barros, J. A.O.; Sena-Cruz, J. M., A finite element model with discrete embedded elements for fibre reinforced composites, Comput. Struct., 94-95, 22-33 (2012)
[15] Cunha, V. M.C. F.; Barros, J. A.O.; Sena-cruz, J. M., An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete, Cem. Concr. Res., 41, 64-76 (2011)
[16] Cunha, V. M.C. F.; Barros, J. A.O.; Sena-Cruz, J. M., Pullout behavior of steel fibers in self-compacting concrete, J. Mater. Civ. Eng., 22, 1-9 (2010)
[17] Diambra, A.; Ibraim, E.; Russell, A.; Muir Wood, D., Modelling the undrained response of fibre reinforced sands, Soils Found, 51, 625-636 (2011)
[18] Diambra, A.; Ibraim, E.; Russell, A. R.; Muir Wood, D., Fibre reinforced sands: from experiments to modelling and beyond, Int. J. Numer. Anal. Methods Geomech., 37, 2427-2455 (2013)
[19] Diambra, A.; Ibraim, E.; Russell, A. R.; Muir Wood, D., Fibre reinforced sands: from experiments to modelling and beyond, Geotext. Geomembranes, 28, 238-250 (2010)
[20] Ezeldin, S. A.; Balaguru, P. N., High strength fiber reinforced concrete under compression, J. Mater. Civ. Eng., 4, 415-429 (1990)
[21] Fanella, D.; Krajcinovic, D., Continuum damage mechanics of fibre reinforced concrete, J. Eng. Mech., 111, 8, 995-1009 (1985)
[22] Fujita, Y.; Ishimaru, R.; Hanai, S.; Suenga, Y., Study on internal friction angle and tensile strength, Proc. Fram, 62, 325-334 (1998)
[23] Gopalaratnam, V. S.; Shah, S. P., Tensile failure of steel fiber-reinforced mortar, J. Eng. Mech., 113, 635-652 (1987)
[24] Guerrero, P.; Naaman, A. E., Effect of mortar fineness and adhesive agents on pullout response of steel fibers, ACI Struct. J., 97, 12-20 (2000)
[25] Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F., Metallic fiber-reinforced concrete behaviour: experiments and constitutive law for finite element modeling, Eng. Fract. Mech., 103, 124-131 (2013)
[26] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[27] Huespe, A. E.; Oliver, J.; Mora, D. F., Computational modeling of high performance steel fiber reinforced concrete using a micromorphic approach, Comput. Mech., 52, 1243-1264 (2013) · Zbl 1398.74056
[28] Jin, C.; Buratti, N.; Stacchini, M.; Savoia, M.; Cusatis, G., Lattice discrete particle modeling of fiber reinforced concrete: experiments and simulations, Eur. J. Mech. A/Solids, 57, 85-107 (2016)
[29] Kamal, A.; Kunieda, M.; Ueda, N.; Nakamura, H., Evaluation of crack opening performance of a repair material with strain hardening behavior, Cem. Concr. Compos., 30, 863-871 (2008)
[30] Kang, J.; Kim, K.; Lim, Y. M.; Bolander, J. E., Modeling of fiber-reinforced cement composites: discrete representation of fiber pullout, Int. J. Solids Struct., 51, 1970-1979 (2014)
[31] Klein, E.; Baud, P.; Reuschlé, T.; Wong, T. F., Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression, Phys. Chem. Earth Part A, 26, 1-2, 21-25 (2001)
[32] Laranjeira, F.; Molins, C.; Aguado, A., Predicting the pullout response of inclined hooked steel fibers, Cem. Concr. Res., 40, 1471-1487 (2010)
[33] Le, L. A.; Nguyen, G. D.; Bui, H. H.; Sheikh, A. H.; Kotousove, A., Localised failure mechanism as the basis for constitutive modelling of geomaterials, Int. J. Eng. Sci., 133, 284-310 (2018) · Zbl 1423.74598
[34] Le, L. A.; Nguyen, G. D.; Bui, H. H.; Sheikh, A. H.; Kotousove, A.; Khanna, A., Modelling jointed rock mass as a continuum with an embedded cohesive- frictional model, Eng. Geol., 228, 107-120 (2017)
[35] Lee, H. K.; Simunovic, S., A damage constitutive model of progressive debonding in aligned discontinuous fiber composites, Int. J. Solids Struct., 38, 875-895 (2001) · Zbl 1010.74006
[36] Lee, H. K.; Simunović, S.; Shin, D. K., A computational approach for prediction of the damage evolution and crushing behavior of chopped random fiber composites, Comput. Mater. Sci., 29, 459-474 (2004)
[37] Li, F.; Li, Z., Continuum damage mechanics based modeling of fiber reinforced concrete in tension, Int. J. Solids Struct., 38, 777-793 (2001) · Zbl 0967.74010
[38] Li, V. C.; Hwai-Chung, W.; Mohamed, M.; Dhanada, M., Tensile behaviour of cement-based composite with random discontinuous steel fibers, J. Am. Ceram. Soc., 79, 74-78 (1996)
[39] Li, V. C.; Wang, S.; Wu, C., Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composites (PVA-ECC), ACI Mater. J., 483-492 (2001)
[40] Li, V. C.; Wang, Y.; Backer, S., A micromechanical model of tension- softening and bridging toughening of short random fiber reinforced brittle, J. Mech. Phys. Solids, 39, 607-625 (1991)
[41] Li, V. C.; Wang, Y.; Backer, S., Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix, Composites, 21, 132-140 (1990)
[42] Li, Z.; Li, F.; Chang, T. Y.; Mai, Y.-. W., Uniaxial tensile behaviour of concrete reinforced with randomly distributed short fibres, ACI Mater. J., 95, 564-574 (1998)
[43] Lin, Z.; Li, V. C., Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces, J. Mech. Phys. Solids, 45, 5, 763-787 (1997)
[44] Lu, C.; Leung, C. K.Y., Theoretical evaluation of fiber orientation and its effects on mechanical properties in engineered cementitious composites (ECC) with various thicknesses, Cem. Concr. Res., 95, 240-246 (2017)
[45] Mihai, I. C.; Jefferson, A. D., A micromechanics based constitutive model for fibre reinforced cementitious composites, Int. J. Solids Struct., 110-111, 152-169 (2017)
[46] Mihai, I. C.; Jefferson, A. D.; Lyons, P., A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete, Eng. Fract. Mech., 159, 35-62 (2016)
[47] Naaman, A. E.; Namur, G. G.; Alwan, J. M.; Najm, H. S., Fibre pullout and bond slip II: experimental validation, J. Struct. Eng., 117, 2791-2800 (1991)
[48] Naaman, A. E.; Namur, G. G.; Alwan, J. M.; Najm, H. S., Fiber pullout and bond slip. I: analytical study, J. Struct. Eng., 117, 2769-2790 (1991)
[49] Nataraja, M. C.; Dhang, N.; Gupta, A. P., Stress-strain curves for steel-fiber reinforced concrete under compression, Cem. Concr. Compos., 21, 383-390 (1999)
[50] Neilsen, M. K.; Schreyer, H. L., Bifurcations in elastic-plastic materials, Int. J. Solids Struct., 30, 521-544 (1993) · Zbl 0825.73268
[51] Nemat-Nasser, S.; Ni, L., A fiber-bridged crack with rate-dependent bridging forces, J. Mech. Phys. Solids, 49, 2635-2650 (2001) · Zbl 0996.74065
[52] Nguyen, B. N.; Khaleel, M. A., A mechanistic approach to damage in short-fiber composites based on micromechanical and continuum damage mechanics descriptions, Compos. Sci. Technol., 64, 607-617 (2004)
[53] Nguyen, G. D.; Korsunsky, A. M.; Einav, I., How to connect two scales of behaviour in constitutive modelling of geomaterials, Géotech. Lett., 2, 129-134 (2012)
[54] Nguyen, G. D., An enriched constitutive model for fracture propagation analysis using the material point method, App. Mech. Mat., 553, 731-736 (2014)
[55] Nguyen, G. D.; Korsunsky, A. M.; Einav, I., A constitutive modelling framework featuring two scales of behaviour: fundamentals and applications to quasi-brittle failure, Eng. Fract. Mech., 115, 221-240 (2014)
[56] Nguyen, G. D.; Nguyen, C. T.; Nguyen, V. P.; Bui, H. H.; Shen, L., A size-dependent constitutive modelling framework for localised failure analysis, Comp. Mech., 58, 257-280 (2016) · Zbl 1398.74377
[57] In press. https://doi.org/10.1016/j.ijsolstr.2019.05.022.
[58] Octávio, C.; Dias-da-Costa, D.; Alfaiate, J.; Júlio, E., Modelling the behaviour of steel fibre reinforced concrete using a discrete strong discontinuity approach, Eng. Fract. Mech., 154, 12-23 (2016)
[59] Oliver, J.; Mora, D. F.; Huespe, A. E.; Weyler, R., A micromorphic model for steel fiber reinforced concrete, Int. J. Solids Struct., 49, 2990-3007 (2012)
[60] Paegle, I.; Fischer, G., Phenomenological interpretation of the shear behavior of reinforced engineered cementitious composite beams, Cem. Concr. Compos., 73, 213-225 (2016)
[61] Park, S. H.; Kim, D. J.; Ryu, G. S.; Koh, K. T., Tensile behavior of ultra high performance hybrid fiber reinforced concrete, Cem. Concr. Compos., 34, 172-184 (2012)
[62] Peng, X.; Meyer, C., A continuum damage mechanics model for concrete reinforced with randomly distributed short fibers, Comput. Struct., 78, 505-515 (2000)
[63] Pike; Oskay, C., Three-dimensional modeling of short fiber-reinforced composites with extended finite-element method, J. Eng. Mech., 1-12 (2015)
[64] Pike; Oskay, C., XFEM modeling of short microfiber reinforced composites with cohesive interfaces, Finite Elem. Anal. Des., 106, 16-31 (2015)
[65] Radtke, F. K.F.; Simone, A.; Sluys, L. J., Apartition of unity finite element method for simulating non-linear debonding and matrix failure in thin fibre composites, Int. J. Numer. Methods Eng., 86, 453-476 (2012) · Zbl 1216.74030
[66] Radtke, F. K.F.; Simone, A.; Sluys, L. J., Apartition of unity finite element method for obtaining elastic properties of continua with embedded thin fibre, Int. J. Numer. Methods Eng., 84, 708-732 (2012) · Zbl 1202.74184
[67] Schauffert, E.; Cusatis, G., Lattice dícrete particle model for fibre-reinforced concrete, I: Theory. J. Eng. Mech., 137, 826-833 (2011)
[68] Schauffert, E. A.; Cusatis, G.; Pelessone, D.; O’Daniel, J. L.; Baylot, J. T., Lattice discrete particle model for fiber-reinforced concrete. II: tensile fracture and multiaxial loading behavior, J. Eng. Mech., 138, 834-841 (2012)
[69] Sirijaroonchai, K.; El-Tawil, S.; Parra-Montesinos, G., Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading, Cem. Concr. Compos., 32, 62-72 (2010)
[70] Slowik, V.; Villmann, B.; Bretschneider, N.; Villmann, T., Computational aspects of inverse analyses for determining softening curves of concrete, Comput. Methods Appl. Mech. Eng., 195, 7223-7236 (2006) · Zbl 1331.74009
[71] Soulioti, D. V.; Barkoula, N. M.; Paipetis, A.; Matikas, T. E., Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete, Strain, 47, 535-541 (2011)
[72] de Oliveira e. Sousa, J. L.A.; Gettu, R., Determining the tensile stress-crack opening curve of concrete by inverse analysis, J. Eng. Mech., 132, 141-148 (2006)
[73] Stang, H.; Shah, S. P., Failure of fibre-reinforced composites by pull-out fracture, J. Mater. Sci., 21, 953-957 (1986)
[74] Tran, H. T.; Wang, Y.; Nguyen, G. D.; Kodikara, J.; Sanchez, M.; Bui, H. H., Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach, Comput. Geotech. (2019), In Press
[75] Tvergaard, V., Fibre debonding and breakage in a whisker-reinforced metal, Mater. Sci. Eng., 190, 203-213 (1995)
[76] Wang, Y.; Bui, H. H.; Nguyen, G. D.; Ranjith, P. G., A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture, Int. J. Solid. Struct., 159, 40-57 (2019)
[77] Wille, K.; El-Tawil, S.; Naaman, A. E., Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading, Cem. Concr. Compos., 48, 53-66 (2014)
[78] Wille, K.; Kim, D. J.; Naaman, A. E., Strain-hardening UHP-FRC with low fiber contents, Mater. Struct. Constr., 44, 583-598 (2011)
[79] Wu, Z. J.; Ye, J. Q.; Cabrera, J. G., 3D analysis of stress transfer in the micromechanics of fiber reinforced composites by using an eigen-function expansion method, J. Mech. Phys. Solids, 48, 1037-1063 (2000) · Zbl 0990.74021
[80] Yaghoobi, A.; Chorzepa, M. G., Meshless modeling framework for fiber reinforced concrete structures, Comput. Struct., 161, 43-54 (2015)
[81] Yu, J.; Yao, J.; Lin, X.; Li, H.; Lam, J. Y.K.; Leung, C. K.Y.; Sham, I. M.L.; Shih, K., Tensile performance of sustainable strain-hardening cementitious composites with hybrid PVA and recycled PET fiber.pdf, Cem. Concr. Res., 107, 110-123 (2018)
[82] Yu, R. C.; Cifuentes, H.; Rivero, I.; Ruiz, G.; Zhang, X., Dynamic fracture behaviour in fibre-reinforced cementitious composites, J. Mech. Phys. Solids, 93, 135-152 (2016)
[83] Zhang, H.; Huang, Y. J.; Yang, Z. J.; Xu, S. L.; Chen, X. W., A discrete-continuum coupled finite element modelling approach for fibre reinforced concrete, Cem. Concr. Res., 106, 130-143 (2018)
[84] Zhang, J.; Ju, X., Investigation on stress-crack opening relationship of engineered cementitious composites using inverse approach, Cem. Concr. Res., 41, 903-912 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.