×

Asymptotic behavior of the occupancy density for obliquely reflected Brownian motion in a half-plane and Martin boundary. (English) Zbl 1482.60109

Summary: Let \(\boldsymbol{\pi}\) be the occupancy density of an obliquely reflected Brownian motion in the half plane and let \((\rho ,\alpha)\) be the polar coordinates of a point in the upper half plane. This work determines the exact asymptotic behavior of \(\boldsymbol{\pi}(\rho, \alpha)\) as \(\rho \to \infty\) with \(\alpha \in (0,\pi)\). We find explicit functions \(a, b, c\) such that \[ \boldsymbol{\pi} (\rho, \alpha) \underset{\rho \to \infty}{\sim} a(\alpha) \rho^{b(\alpha)} e^{-c(\alpha) \rho}. \] This closes an open problem first stated by Professor J. Michael Harrison in August 2013. We also compute the exact asymptotics for the tail distribution of the boundary occupancy measure and we obtain an explicit integral expression for \(\boldsymbol{\pi}\). We conclude by finding the Martin boundary of the process and giving all of the corresponding harmonic functions satisfying an oblique Neumann boundary problem.

MSC:

60J65 Brownian motion
60E07 Infinitely divisible distributions; stable distributions
60K25 Queueing theory (aspects of probability theory)
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
90B22 Queues and service in operations research

References:

[1] Avram, F., Dai, J. G. and Hasenbein, J. J. (2001). Explicit solutions for variational problems in the quadrant. Queueing Syst. 37 259-289. · Zbl 0970.60027 · doi:10.1023/A:1011004620420
[2] Brychkov, Y. A., Glaeske, H.-J., Prudnikov, A. P. and Tuan, V. K. (1992). Multidimensional Integral Transformations. Gordon & Breach, Philadelphia, PA. · Zbl 0752.44004
[3] Chung, K. L. and Walsh, J. B. (2005). Markov Processes, Brownian Motion, and Time Symmetry, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 249. Springer, New York. · Zbl 1082.60001 · doi:10.1007/0-387-28696-9
[4] Dai, J. G. and Miyazawa, M. (2011). Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution. Stoch. Syst. 1 146-208. · Zbl 1291.60168 · doi:10.1214/10-SSY022
[5] Dai, J. G. and Miyazawa, M. (2013). Stationary distribution of a two-dimensional SRBM: Geometric views and boundary measures. Queueing Syst. 74 181-217. · Zbl 1276.60089 · doi:10.1007/s11134-012-9339-1
[6] Doetsch, G. (1974). Introduction to the Theory and Application of the Laplace Transformation. Springer, New York. · Zbl 0278.44001
[7] Fedoryuk, M. V. (1989). Asymptotic methods in analysis. In Analysis I 83-191. Springer, Berlin.
[8] Franceschi, S. and Kourkova, I. (2017). Asymptotic expansion of stationary distribution for reflected Brownian motion in the quarter plane via analytic approach. Stoch. Syst. 7 32-94. · Zbl 1365.60072 · doi:10.1287/16-SSY218
[9] Harrison, J. M. and Williams, R. J. (1987). Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 77-115. · Zbl 0632.60095 · doi:10.1080/17442508708833469
[10] Harrison, M. (2013). Open problems session: Modern probabilistic techniques for stochastic systems and networks: “Asymptotic behavior of the occupancy density for RBM in a half-plane”. Isaac Newton Institute, Cambridge, U. K. Accessed: 2020-03-15, https://www.newton.ac.uk/files/attachments/968771/157257.pdf
[11] Ignatiouk-Robert, I. (2010). \(t\)-Martin boundary of reflected random walks on a half-space. Electron. Commun. Probab. 15 149-161. · Zbl 1226.60104 · doi:10.1214/ECP.v15-1541
[12] Kunita, H. and Watanabe, T. (1963). Markov processes and Martin boundaries. Bull. Amer. Math. Soc. 69 386-391. · Zbl 0114.33603 · doi:10.1090/S0002-9904-1963-10937-4
[13] Kunita, H. and Watanabe, T. (1965). Markov processes and Martin boundaries. I. Illinois J. Math. 9 485-526. · Zbl 0147.16505
[14] Kurkova, I. and Raschel, K. (2011). Random walks in \[{({\mathbb{Z}_+})^2}\] with non-zero drift absorbed at the axes. Bull. Soc. Math. France 139 341-387. · Zbl 1243.60042 · doi:10.24033/bsmf.2611
[15] Kurkova, I. A. and Malyshev, V. A. (1998). Martin boundary and elliptic curves. Markov Process. Related Fields 4 203-272. · Zbl 0929.60055
[16] Kurkova, I. A. and Suhov, Y. M. (2003). Malyshev’s theory and JS-queues. Asymptotics of stationary probabilities. Ann. Appl. Probab. 13 1313-1354. · Zbl 1039.60082 · doi:10.1214/aoap/1069786501
[17] Lieshout, P. and Mandjes, M. (2007). Tandem Brownian queues. Math. Methods Oper. Res. 66 275-298. · Zbl 1139.60045 · doi:10.1007/s00186-007-0149-x
[18] Lieshout, P. and Mandjes, M. (2008). Asymptotic analysis of Lévy-driven tandem queues. Queueing Syst. 60 203-226. · Zbl 1156.90334 · doi:10.1007/s11134-008-9094-5
[19] Malyšev, V. A. (1973). Asymptotic behavior of the stationary probabilities for two-dimensional positive random walks. Sibirsk. Mat. Zh. 14 156-169. · Zbl 0307.60060
[20] Martin, R. S. (1941). Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49 137-172. · Zbl 0025.33302 · doi:10.2307/1990054
[21] Miyazawa, M. and Kobayashi, M. (2011). Conjectures on tail asymptotics of the marginal stationary distribution for a multidimensional SRBM. Queueing Syst. 68 251-260. · Zbl 1275.60064 · doi:10.1007/s11134-011-9251-0
[22] Miyazawa, M. and Rolski, T. (2009). Tail asymptotics for a Lévy-driven tandem queue with an intermediate input. Queueing Syst. 63 323-353 · Zbl 1209.90117 · doi:10.1007/s11134-009-9146-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.