Boundedness of log-pluricanonical maps for surfaces of log-general type in positive characteristic. (English) Zbl 1483.14066

Summary: In this article we prove the following boundedness result: Fix a DCC set \(I\subseteq [0, 1]\). Let \(\mathfrak{D}\) be the set of all log pairs \((X, \Delta)\) satisfying the following properties: (i) \(X\) is a projective surface defined over an algebraically closed field, (ii) \((X, \Delta)\) is log canonical and the coefficients of \(\Delta\) are in \(I\), and (iii) \(K_X+\Delta\) is big. Then there is a positive integer \(N=N(I)\) depending only on the set \(I\) such that the linear system \(|\lfloor m(K_X+\Delta)\rfloor|\) defines a birational map onto its image for all \(m\geq N\) and \((X, \Delta)\in\mathfrak{D} \).


14J29 Surfaces of general type
14E05 Rational and birational maps
14E30 Minimal model program (Mori theory, extremal rays)
14G17 Positive characteristic ground fields in algebraic geometry
Full Text: arXiv Link


[1] V. Alexeev: Boundedness and \(K^2\) for log surfaces, Internat. J. Math. 5 (1994), 779-810. · Zbl 0838.14028
[2] V. Alexeev and S. Mori: Bounding singular surfaces of general type; in Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 143-174. · Zbl 1103.14021
[3] X. Benveniste: Sur les applications pluricanoniques des variétés de type très général en dimension 3, Amer. J. Math. 108 (1986), 433-449. · Zbl 0601.14035
[4] E. Bombieri: The pluricanonical map of a complex surface; in Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, 35-87. · Zbl 0213.47601
[5] M. Chen: The relative pluricanonical stability for 3-folds of general type. Proc. Amer. Math. Soc. 129 (2001), 1927-1937. · Zbl 0966.14007
[6] G. Di Cerbo and A. Fanelli: Effective Matsusaka’s theorem for surfaces in characteristic \(p\), Algebra Number Theory, 9 (2015), 1453-1475. · Zbl 1386.14133
[7] T. Ekedahl: Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 97-144. · Zbl 0674.14028
[8] C.D. Hacon and S.J. Kovács: On the boundedness of slc surfaces of general type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), 191-215. · Zbl 1409.14069
[9] C.D. Hacon and J. McKernan: Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25. · Zbl 1121.14011
[10] C.D. Hacon, J. McKernan and C. Xu: ACC for log canonical thresholds. Ann. of Math. (2) 180 (2014), 523-571. · Zbl 1320.14023
[11] M. Hanamura: Pluricanonical maps of minimal 3-folds, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), 116-118. · Zbl 0598.14032
[12] J. Kollár: Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), 11-42. · Zbl 0598.14015
[13] J. Kollár: Singularities of the minimal model program, With a collaboration of Sándor Kovács, Cambridge Tracts in Mathematics, 200. Cambridge University Press, Cambridge, 2013. · Zbl 1282.14028
[14] J. Kollár and S. Mori: Birational geometry of algebraic varieties, with the collaboration of C.H. Clemens and A. Corti, Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998. · Zbl 0926.14003
[15] T. Luo: Plurigenera of regular threefolds, Math. Z. 217 (1994), 37-46. · Zbl 0808.14029
[16] T. Luo: Global holomorphic 2-forms and pluricanonical systems on threefolds. Math. Ann. 318 (2000), 707-730. · Zbl 1005.14016
[17] K. Matsuki: On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan 38 (1986), 339-359. · Zbl 0576.14040
[18] J. McKernan: Boundedness of log terminal Fano pairs of bounded index, arXiv:math/0205214.
[19] S. Takayama: Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587. · Zbl 1108.14031
[20] H. Terakawa: The \(d\)-very ampleness on a projective surface in positive characteristic, Pacific J. Math. 187 (1999), 187-199. · Zbl 0967.14008
[21] G.T. Todorov: Effective log Iitaka-fibrations for surfaces and threefolds. Manuscripta Math. 13 (2010), 183-195. · Zbl 1200.14032
[22] H.Tsuji: Pluricanonical systems of projective varieties of general type. I. Osaka J. Math. 43 (2006), 967-995. · Zbl 1142.14012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.