×

Annealed Ising model on configuration models. (English) Zbl 1484.82008

Summary: In this paper, we study the annealed ferromagnetic Ising model on the configuration model. In an annealed system, we take the average on both sides of the ratio defining the Boltzmann-Gibbs measure of the Ising model. In the configuration model, the degrees are specified. Remarkably, when the degrees are deterministic, the critical value of the annealed Ising model is the same as that for the quenched Ising model. For independent and identically distributed (i.i.d.) degrees, instead, the annealed critical value is strictly smaller than that of the quenched Ising model. This identifies the degree structure of the underlying graph as the main driver for the critical value. Furthermore, in both contexts (deterministic or random degrees), we provide the variational expression for the annealed pressure. Interestingly, our rigorous results establish that only part of the heuristic conjectures in the physics literature were correct.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
05C80 Random graphs (graph-theoretic aspects)

References:

[1] G. Bianconi. Mean field solution of the Ising model on a Barabási-Albert network. Phys. Lett. A 303 (2002) 166. · Zbl 0999.82014 · doi:10.1016/S0375-9601(02)01232-X
[2] S. Bornholdt and F. Wagner. Stability of money: Phase transitions in an Ising economy. Phys. A, Stat. Mech. Appl. 316 (1) (2002) 453-468. · Zbl 1001.91073
[3] A. Bovier. Statistical Mechanics of Disordered Systems. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2006. · Zbl 1246.82001 · doi:10.1017/CBO9780511616808
[4] V. H. Can. Critical behavior of the annealed Ising model on random regular graphs. J. Stat. Phys. 169 (2017) 480-503. · Zbl 1382.82007 · doi:10.1007/s10955-017-1879-7
[5] V. H. Can. Annealed limit theorems for the Ising model on random regular graphs. Ann. Appl. Probab. 29 (3) (2019) 1398-1445. · Zbl 1411.05235 · doi:10.1214/17-AAP1377
[6] F. Caravenna, F. den Hollander and N. Pétrélis. Lectures on random polymers. Clay Math. Proc. 15 (2012) 319-393. · Zbl 1413.60097 · doi:10.1007/s11040-016-9205-1
[7] P. Contucci, I. Gallo and G. Menconi. Phase transitions in social sciences: Two-population mean field theory. Internat. J. Modern Phys. B 22 (14) (2008) 2199-2212. · Zbl 1157.82320
[8] P. Contucci and C. Giardinà. Perspectives on Spin Glasses. Cambridge University Press, Cambridge, 2013. · Zbl 1277.82005
[9] A. Dembo and A. Montanari. Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat. 24 (2) (2010) 137-211. · Zbl 1205.05209 · doi:10.1214/09-BJPS027
[10] A. Dembo and A. Montanari. Ising models on locally tree-like graphs. Ann. Appl. Probab. 20 (2) (2010) 565-592. · Zbl 1191.82025 · doi:10.1214/09-AAP627
[11] A. Dembo, A. Montanari, A. Sly and N. Sun. The replica symmetric solution for Potts models on d-regular graphs. Comm. Math. Phys. 327 (2) (2014) 551-575. · Zbl 1288.82009 · doi:10.1007/s00220-014-1956-6
[12] A. Dembo, A. Montanari and N. Sun. Factor models on locally tree-like graphs. Ann. Probab. 41 (6) (2013) 4162-4213. · Zbl 1280.05119 · doi:10.1214/12-AOP828
[13] S. Dommers, C. Giardinà, C. Giberti and R. van der Hofstad. Large deviations for the annealed Ising model on inhomogeneous random graphs: Spins and degrees. J. Stat. Phys. 173 (2018) 1045-1081. · Zbl 1403.60028 · doi:10.1007/s10955-018-2027-8
[14] S. Dommers, C. Giardinà, C. Giberti, R. van der Hofstad and M. L. Prioriello. Ising critical behavior of inhomogeneous Curie-Weiss models and annealed random graphs. Comm. Math. Phys. 348 (1) (2016) 221-263. · Zbl 1359.82020 · doi:10.1007/s00220-016-2752-2
[15] S. Dommers, C. Giardinà and R. van der Hofstad. Ising models on power-law random graphs. J. Stat. Phys. 141 (4) (2010) 638-660. · Zbl 1214.82116 · doi:10.1007/s10955-010-0067-9
[16] S. Dommers, C. Giardinà and R. van der Hofstad. Ising critical exponents on random trees and graphs. Comm. Math. Phys. 328 (1) (2014) 355-395. · Zbl 1292.82004 · doi:10.1007/s00220-014-1992-2
[17] S. Dorogovtsev, A. Goltsev and J. Mendes. Critical phenomena in complex networks. Rev. Modern Phys. 80 (4) (2008) 1275.
[18] J. Dugundji. Topology. Allyn and Bacon, Boston, 1966. · Zbl 0144.21501
[19] R. S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 271. Springer-Verlag, New York, 1985. · Zbl 0566.60097 · doi:10.1007/978-1-4613-8533-2
[20] D. Fraiman, P. Balenzuela, J. Foss and D. Chialvo. Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 79 (6) (2009), 061922.
[21] C. Giardinà, C. Giberti, R. van der Hofstad and M. L. Prioriello. Quenched central limit theorems for the Ising model on random graphs. J. Stat. Phys. 160 (6) (2015) 1623-1657. · Zbl 1327.82013 · doi:10.1007/s10955-015-1302-1
[22] C. Giardinà, C. Giberti, R. van der Hofstad and M. L. Prioriello. Annealed central limit theorems for the Ising model on random graphs. ALEA Lat. Am. J. Probab. Math. Stat. 13 (1) (2016) 121-161. · Zbl 1331.05193
[23] L. Hörmander. The Notion of Convexity. Progress in Mathematics 127. Birkhäuser Boston, Inc., Boston, MA, 1994. · Zbl 0835.32001
[24] G. A. Kohring. Ising models of social impact: The role of cumulative advantage. J. Phys., I 6 (2) (1996) 301-308.
[25] M. Niss. History of the Lenz-Ising model 1920-1950: From ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 59 (3) (2005) 267-318. · Zbl 1068.82001 · doi:10.1007/s00407-004-0088-3
[26] M. Niss. History of the Lenz-Ising model 1950-1965: From irrelevance to relevance. Arch. Hist. Exact Sci. 63 (3) (2009) 243-287. · Zbl 1180.01037 · doi:10.1007/s00407-008-0039-5
[27] B. Simon. Statistical Mechanics of Lattice Gases. Princeton University Press, Princeton, 1993. · Zbl 0804.60093
[28] R. van der Hofstad. Random Graphs and Complex Networks. Cambridge Series in Statistical and Probabilistic Mathematics 1. Cambridge University Press, Cambridge, 2017. · Zbl 1361.05002 · doi:10.1017/9781316779422
[29] R. van der Hofstad. Random graphs and complex networks. Volume 2, 2020+. In preparation, available at http://www.win.tue.nl/texttildelowrhofstad/NotesRGCNII.pdf. · Zbl 1361.05002 · doi:10.1017/9781316779422
[30] R. van der Hofstad. Stochastic processes on random graphs, 2020+. In preparation, available at http://www.win.tue.nl/texttildelowrhofstad/SaintFlour_SPoRG.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.