Bedi, Harpreet Singh Degree as a monoid. (English) Zbl 1485.14043 Rocky Mt. J. Math. 51, No. 5, 1521-1539 (2021). Summary: “Polynomials” with degree as an ordered monoid say \(\Delta\) are constructed along with corresponding schemes and line bundles \(\mathcal{O}(d)\), \(d \in \Delta\). The cohomology of these line bundles is then computed using Čech complex and new proof of zero cohomology of affine schemes is given. The last section of the paper applies the theory developed for the construction and computation of affine cohomology of perfectoid Tate algebras. MSC: 14G45 Perfectoid spaces and mixed characteristic 14A15 Schemes and morphisms 14F06 Sheaves in algebraic geometry Keywords:degree; line bundles; perfectoid; Čech cohomology PDFBibTeX XMLCite \textit{H. S. Bedi}, Rocky Mt. J. Math. 51, No. 5, 1521--1539 (2021; Zbl 1485.14043) Full Text: DOI Link References: [1] A. Abbes, Éléments de géométrie rigide, vol. I: construction et étude géométrique des espaces rigides, Progress in Mathematics 286, Springer, Basel, 2010. [2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Avalon Publishing, 1994. [3] H. S. Bedi, Line bundles of rational degree over perfectoid space, Ph.D. thesis, The George Washington University, 2018, available at https://www.proquest.com/docview/1985045168. [4] H. Bedi, “Perfectoid algebraic geometry”, in preparation. [5] B. Bhatt, “Lecture notes for a class on perfectoid spaces”, 2017, available at http://www-personal.umich.edu/ bhattb/teaching/mat679w17/lectures.pdf. [6] S. Bosch, Lectures on formal and rigid geometry, Lecture Notes in Mathematics 2105, Springer, Cham, 2014. · Zbl 1314.14002 · doi:10.1007/978-3-319-04417-0 [7] N. Bourbaki, Algebra I: chapters 1-3, Springer, Berlin, 1998. [8] N. Bourbaki, Commutative algebra: chapters 1-7, Springer, Berlin, 1998. [9] U. Görtz and T. Wedhorn, Algebraic geometry I: schemes with examples and exercises, Vieweg + Teubner, Wiesbaden, 2010. · Zbl 1213.14001 · doi:10.1007/978-3-8348-9722-0 [10] A. Grothendieck, “Éléments de géométrie algébrique: I. Le langage des schémas”, Publications Mathématiques de l’IHÉS 4 (1960), 5-228. [11] R. Hartshorne, Algebraic geometry, Grad. Texts Math. 52, Springer, New York, NY, 1977. · Zbl 0367.14001 [12] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press, Oxford, 2002. · Zbl 0996.14005 [13] D. Perrin, Algebraic geometry: an introduction, Springer, London, 2008. · Zbl 1132.14001 · doi:10.1007/978-1-84800-056-8 [14] M. Raynaud, “Géométrie analytique rigide d’après Tate, Kiehl. . . ”, pp. 319-327 in Table ronde d’analyse non archimédienne (Paris, 1972), Mémoires de la Société Mathématique de France 39-40, Société mathématique de France, 1974. · Zbl 0299.14003 · doi:10.24033/msmf.170 [15] P. Scholze, “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245-313. · Zbl 1263.14022 · doi:10.1007/s10240-012-0042-x [16] J.-P. Serre, “Faisceaux algébriques cohérents”, Ann. of Math. (2) 61 (1955), 197-278. · Zbl 0067.16201 · doi:10.2307/1969915 [17] “The Stacks project”, electronic reference, 2005-, available at http://stacks.math.columbia.edu. [18] T. Tao, An introduction to measure theory, Graduate Studies in Mathematics 126, American Mathematical Society, Providence, RI, 2011. · Zbl 1231.28001 · doi:10.1090/gsm/126 [19] R. Vakil, “The rising sea: foundations of algebraic geometry”, 2017, available at http://math.stanford.edu/ vakil/216blog/ FOAGfeb0717public.pdf This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.