Pan, Yifei; Yan, Yu A Liouville-type theorem for the inequality \(\Delta u \geq f(u)\). (English) Zbl 1487.35141 Rocky Mt. J. Math. 51, No. 5, 1807-1819 (2021). Summary: We prove a Liouville-type theorem for the entire solutions of \(\Delta u \geq f (u)\), complementing a classical result by R. Osserman [Pac. J. Math. 7, 1641–1647 (1957; Zbl 0083.09402)]. Cited in 1 Document MSC: 35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs 35B08 Entire solutions to PDEs 35R45 Partial differential inequalities and systems of partial differential inequalities Keywords:Liouville theorem; entire solutions Citations:Zbl 0083.09402 PDFBibTeX XMLCite \textit{Y. Pan} and \textit{Y. Yan}, Rocky Mt. J. Math. 51, No. 5, 1807--1819 (2021; Zbl 1487.35141) Full Text: DOI Link References: [1] S. Y. Cheng and S. T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math. 28:3 (1975), 333-354. · Zbl 0312.53031 · doi:10.1002/cpa.3160280303 [2] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. · Zbl 0064.33002 [3] A. Coffman and Y. Pan, “Some nonlinear differential inequalities and an application to Hölder continuous almost complex structures”, Ann. Inst. H. Poincaré Anal. Non Linéaire 28:2 (2011), 149-157. · Zbl 1213.35409 · doi:10.1016/j.anihpc.2011.02.001 [4] D.-P. Covei, “The Keller-Osserman problem for the \[k\]-Hessian operator”, Results Math. 75:2 (2020), art. id. 48. · Zbl 1437.35346 · doi:10.1007/s00025-020-1174-9 [5] L. C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001 · doi:10.1090/gsm/019 [6] R. Osserman, “On the inequality \[\Delta u\geq f(u)\]”, Pacific J. Math. 7 (1957), 1641-1647. · Zbl 0083.09402 · doi:10.2140/pjm.1957.7.1641 [7] Y. Pan and Y. Zhang, “A residue-type phenomenon and its applications to higher order nonlinear systems of Poisson type”, J. Math. Anal. Appl. 495:2 (2021), art. id. 124749. · Zbl 1459.35101 · doi:10.1016/j.jmaa.2020.124749 [8] S. Pigola, M. Rigoli, and A. G. Setti, “Maximum principles at infinity on Riemannian manifolds: an overview”, Mat. Contemp. 31 (2006), 81-128. · Zbl 1145.58009 [9] W. O. Ray, Real analysis, Prentice Hall, Englewood Cliffs, NJ, 1988. [10] H. Rhee, “Spherically symmetric entire solutions of \[\Delta^pu=f(u)\]”, Proc. Amer. Math. Soc. 69:2 (1978), 355-356 · Zbl 0385.35021 · doi:10.2307/2042626 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.