Doehrman, Thomas; Sethuraman, Sunder; Venkataramani, Shankar C. Remarks on the range and multiple range of a random walk up to the time of exit. (English) Zbl 1487.60090 Rocky Mt. J. Math. 51, No. 5, 1603-1614 (2021). Summary: We consider the scaling behavior of the range and \(p\)-multiple range, that is the number of points visited and the number of points visited exactly \(p \geq 1\) times, of a simple random walk on \(\mathbb{Z}^d\), for dimensions \(d \geq 2\), up to time of exit from a domain \(D_N\) of the form \(D_N = ND\), where \(D \subset \mathbb{R}^d\), as \(N \uparrow \infty \). Recent papers have discussed connections of the range and related statistics with the Gaussian free field, identifying in particular that the distributional scaling limit for the range, in the case \(D\) is a cube in \(d \geq 3\), is proportional to the exit time of Brownian motion. The purpose of this note is to give a concise, different argument that the scaled range and multiple range, in a general setting in \(d \geq 2\), both weakly converge to proportional exit times of Brownian motion from \(D\), and that the corresponding limit moments are “polyharmonic”, solving a hierarchy of Poisson equations. MSC: 60G50 Sums of independent random variables; random walks 60J65 Brownian motion Keywords:random walk; range; multiple; Brownian motion; exit; time; constrained; polyharmonic PDFBibTeX XMLCite \textit{T. Doehrman} et al., Rocky Mt. J. Math. 51, No. 5, 1603--1614 (2021; Zbl 1487.60090) Full Text: DOI arXiv Link References: [1] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics 140, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001 [2] S. Athreya, S. Sethuraman, and B. Tóth, “On the range, local times and periodicity of random walk on an interval”, ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 269-284. · Zbl 1276.60105 [3] P. Billingsley, Convergence of probability measures, 2nd ed., Wiley, New York, 1999. · Zbl 0944.60003 · doi:10.1002/9780470316962 [4] A. Dvoretzky and P. Erdös, “Some problems on random walk in space”, pp. 353-367 in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley and LA, CA, 1950. · Zbl 0044.14001 [5] M. Ferraro and L. Zaninetti, “Statistics of visits to sites in random walks”, Phys. A 338:3-4 (2004), 307-318. · doi:10.1016/j.physa.2004.01.062 [6] L. Flatto, “The multiple range of two-dimensional recurrent walk”, Ann. Probability 4:2 (1976), 229-248. · Zbl 0349.60067 · doi:10.1214/aop/1176996131 [7] L. L. Helms, “Biharmonic functions and Brownian motion”, J. Appl. Probability 4 (1967), 130-136. · Zbl 0314.60059 · doi:10.1017/s0021900200025286 [8] A. Jego, “Characterisation of planar Brownian multiplicative chaos”, preprint, 2019. · Zbl 1508.60089 [9] A. Jego, “Thick points of random walk and the Gaussian free field”, Electron. J. Probab. 25 (2020), 1-39. · Zbl 1441.60036 · doi:10.1214/20-ejp433 [10] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics 113, Springer, 1991. · Zbl 0734.60060 · doi:10.1007/978-1-4612-0949-2 [11] M. Kim, D. Paini, and R. Jurdak, “Modeling stochastic processes in disease spread across a heterogeneous social system”, Proceedings of the National Academy of Sciences 116:2 (2019), 401-406. [12] A. Okubo and S. A. Levin, Diffusion and ecological problems: modern perspectives, 2nd ed., Interdisciplinary Applied Mathematics 14, Springer, 2001. · doi:10.1007/978-1-4757-4978-6 [13] J. H. Pitt, “Multiple points of transient random walks”, Proc. Amer. Math. Soc. 43 (1974), 195-199. · Zbl 0292.60107 · doi:10.2307/2039355 [14] F. Spitzer, Principles of random walk, D. Van Nostrand Co., Princeton, NJ, 1964. · Zbl 0119.34304 [15] A.-S. Sznitman, Brownian motion, obstacles and random media, Springer, 1998. · Zbl 0973.60003 · doi:10.1007/978-3-662-11281-6 [16] T.-H. Wen, M.-H. Lin, and C.-T. Fang, “Population movement and vector-borne disease transmission: differentiating spatial-temporal diffusion patterns of commuting and noncommuting dengue cases”, Annals of the Association of American Geographers 102:5 (2012), 1026-1037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.