Feng, Long; Jiang, Tiefeng; Liu, Binghui; Xiong, Wei Max-sum tests for cross-sectional independence of high-dimensional panel data. (English) Zbl 1487.62054 Ann. Stat. 50, No. 2, 1124-1143 (2022). Summary: We consider a testing problem for cross-sectional independence for high-dimensional panel data, where the number of cross-sectional units is potentially much larger than the number of observations. The cross-sectional independence is described through linear regression models. We study three tests named the sum, the max and the max-sum tests, where the latter two are new. The sum test is initially proposed by T. S. Breusch and A. R. Pagan [Rev. Econ. Stud. 47, 239–253 (1980; Zbl 0465.62107)]. We design the max and sum tests for sparse and nonsparse correlation coefficients of random errors between the linear regression models, respectively. And the max-sum test is devised to compromise both situations on the correlation coefficients. Indeed, our simulation shows that the max-sum test outperforms the previous two tests. This makes the max-sum test very useful in practice where sparsity or not for a set of numbers is usually vague. Toward the theoretical analysis of the three tests, we have settled two conjectures regarding the sum of squares of sample correlation coefficients asked by M. H. Pesaran, “General diagnostic test for cross section dependence in panels”, IZA Discussion Paper No. 1240 (2004)]. In addition, we establish the asymptotic theory for maxima of sample correlation coefficients appeared in the linear regression model for panel data, which is also the first successful attempt to our knowledge. To study the max-sum test, we create a novel method to show asymptotic independence between maxima and sums of dependent random variables. We expect the method itself is useful for other problems of this nature. Finally, an extensive simulation study as well as a case study are carried out. They demonstrate advantages of our proposed methods in terms of both empirical powers and robustness for correlation coefficients of residuals regardless of sparsity or not. Cited in 3 Documents MSC: 62H15 Hypothesis testing in multivariate analysis 62F05 Asymptotic properties of parametric tests Keywords:asymptotic independence; asymptotic normality; cross-sectional independence; extreme-value distribution; high-dimensional data; hypothesis tests; max-sum test; panel data models Citations:Zbl 0465.62107 PDFBibTeX XMLCite \textit{L. Feng} et al., Ann. Stat. 50, No. 2, 1124--1143 (2022; Zbl 1487.62054) Full Text: DOI arXiv References: [1] BALTAGI, B. H. (2013). Econometric Analysis of Panel Data, 5 ed. Wiley, New York. [2] BALTAGI, B. H., KAO, C. and PENG, B. (2016). Testing cross-sectional correlation in large panel data models with serial correlation. Econometrics 4 1-24. [3] BEAULIEU, M.-C., DUFOUR, J.-M. and KHALAF, L. (2007). Multivariate tests of mean-variance efficiency with possibly non-Gaussian errors: An exact simulation-based approach. J. Bus. Econom. Statist. 25 398-410. · doi:10.1198/073500106000000468 [4] BREUSCH, T. S. and PAGAN, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 47 239-253. · Zbl 0465.62107 · doi:10.2307/2297111 [5] Cai, T., Fan, J. and Jiang, T. (2013). Distributions of angles in random packing on spheres. J. Mach. Learn. Res. 14 1837-1864. · Zbl 1318.60017 [6] Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. J. Amer. Statist. Assoc. 106 672-684. · Zbl 1232.62086 · doi:10.1198/jasa.2011.tm10560 [7] Cai, T., Liu, W. and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. J. Amer. Statist. Assoc. 108 265-277. · Zbl 06158341 · doi:10.1080/01621459.2012.758041 [8] CAI, T. T., LIU, W. and XIA, Y. (2014). Two-sample test of high dimensional means under dependence. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 349-372. · Zbl 07555454 · doi:10.1111/rssb.12034 [9] CAI, T. T. and ZHANG, A. (2016). Inference for high-dimensional differential correlation matrices. J. Multivariate Anal. 143 107-126. · Zbl 1328.62328 · doi:10.1016/j.jmva.2015.08.019 [10] CHANG, J., YAO, Q. and ZHOU, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations. Biometrika 104 111-127. · Zbl 1506.62307 · doi:10.1093/biomet/asw066 [11] CHUDIK, A. and PESARAN, M. H. (2015). Large panel data models with cross-sectional dependence: A survey. In The Oxford Handbook of Panel Data 3-45. [12] FAMA, E. and FRENCH, K. (1993). Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33 3-56. · Zbl 1131.91335 [13] FAN, J., LIAO, Y. and YAO, J. (2015). Power enhancement in high-dimensional cross-sectional tests. Econometrica 83 1497-1541. · Zbl 1410.62201 · doi:10.3982/ECTA12749 [14] FENG, L., JIANG, T., LIU, B. and XIONG, W. (2022). Supplement to “Max-sum tests for cross-sectional independence of high-dimensional panel data.” https://doi.org/10.1214/21-AOS2142SUPP [15] GAGLIARDINI, P., OSSOLA, E. and SCAILLET, O. (2016). Time-varying risk premium in large cross-sectional equity data sets. Econometrica 84 985-1046. · Zbl 1419.91362 · doi:10.3982/ECTA11069 [16] GIBBONS, M. R., ROSS, S. A. and SHANKEN, J. (1989). A test of the efficiency of a given portfolio. Econometrica 57 1121-1152. · Zbl 0679.62097 · doi:10.2307/1913625 [17] HSIAO, C. (2014). Analysis of Panel Data, 3rd ed. Econometric Society Monographs 54. Cambridge Univ. Press, New York. · Zbl 1320.62003 · doi:10.1017/CBO9781139839327 [18] HSIAO, C., PESARAN, M. H. and PICK, A. (2012). Diagnostic tests of cross-sectional independence for limited dependent variable panel data models. Oxf. Bull. Econ. Stat. 74 253-277. [19] HSING, T. (1995). A note on the asymptotic independence of the sum and maximum of strongly mixing stationary random variables. Ann. Probab. 23 938-947. · Zbl 0831.60034 [20] JAMES, B., JAMES, K. and QI, Y. (2007). Limit distribution of the sum and maximum from multivariate Gaussian sequences. J. Multivariate Anal. 98 517-532. · Zbl 1117.62019 · doi:10.1016/j.jmva.2006.06.009 [21] Jiang, T. (2004). The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab. 14 865-880. · Zbl 1047.60014 · doi:10.1214/105051604000000143 [22] JIANG, T. (2019). Determinant of sample correlation matrix with application. Ann. Appl. Probab. 29 1356-1397. · Zbl 1412.60016 · doi:10.1214/17-AAP1362 [23] Jiang, T. and Qi, Y. (2015). Likelihood ratio tests for high-dimensional normal distributions. Scand. J. Stat. 42 988-1009. · Zbl 1419.62143 · doi:10.1111/sjos.12147 [24] JIANG, T. and YANG, F. (2013). Central limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. Ann. Statist. 41 2029-2074. · Zbl 1277.62149 · doi:10.1214/13-AOS1134 [25] LI, D. and XUE, L. (2015). Joint limiting laws for high-dimensional independence tests. Available at arXiv:1512.08819. [26] Li, Z., Lam, C., Yao, J. and Yao, Q. (2019). On testing for high-dimensional white noise. Ann. Statist. 47 3382-3412. · Zbl 1512.62079 · doi:10.1214/18-AOS1782 [27] Liu, W.-D., Lin, Z. and Shao, Q.-M. (2008). The asymptotic distribution and Berry-Esseen bound of a new test for independence in high dimension with an application to stochastic optimization. Ann. Appl. Probab. 18 2337-2366. · Zbl 1154.60021 · doi:10.1214/08-AAP527 [28] MACKINLAY, A. R. and RICHARDSON, M. P. (1991). Using generalized method of moments to test mean ariance efficiency. J. Finance 46 511-527. [29] MOSCONE, F. and TOSETTI, E. (2009). A review and comparison of tests of cross-section independence in panels. J. Econ. Surv. 23 528-561. [30] PESARAN, M. H. (2004). General diagnostic test for cross section dependence in panels. IZA Discussion Paper No. 1240. [31] PESARAN, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Rev. 34 1088-1116. · Zbl 1491.62251 · doi:10.1080/07474938.2014.956623 [32] PESARAN, M. H. (2015). Time Series and Panel Data Econometrics. Oxford University Press, London. · Zbl 1336.91002 [33] PESARAN, M. H., ULLAH, A. and YAMAGATA, T. (2008). A bias-adjusted LM test of error cross-section independence. Econom. J. 11 105-127. · Zbl 1135.91414 · doi:10.1111/j.1368-423X.2007.00227.x [34] SARAFIDIS, V. and WANSBEEK, T. (2012). Cross-sectional dependence in panel data analysis. Econometric Rev. 31 483-531. · Zbl 1491.62258 · doi:10.1080/07474938.2011.611458 [35] SARAFIDIS, V., YAMAGATA, T. and ROBERTSON, D. (2009). A test of cross section dependence for a linear dynamic panel model with regressors. J. Econometrics 148 149-161. · Zbl 1429.62696 · doi:10.1016/j.jeconom.2008.10.006 [36] SCHOTT, J. R. (2005). Testing for complete independence in high dimensions. Biometrika 92 951-956. · Zbl 1151.62327 · doi:10.1093/biomet/92.4.951 [37] SHAPIRO, S. S. and WILK, M. B. (1965). An analysis of variance test for normality: Complete samples. Biometrika 52 591-611. · Zbl 0134.36501 · doi:10.1093/biomet/52.3-4.591 [38] STEPHAN, F. F. (1934). Sampling errors and interpretations of social data ordered in time and space. J. Amer. Statist. Assoc. 29 165-166. [39] Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd ed. MIT Press, Cambridge, MA. · Zbl 1327.62009 [40] XU, G., LIN, L., WEI, P. and PAN, W. (2016). An adaptive two-sample test for high-dimensional means. Biometrika 103 609-624. · Zbl 1506.62314 · doi:10.1093/biomet/asw029 [41] Zheng, S., Bai, Z. and Yao, J. (2015). Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing. Ann. Statist. 43 546-591 · Zbl 1312.62074 · doi:10.1214/14-AOS1292 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.