×

Rigidity of Euler products. (English) Zbl 1489.11119

Authors’ abstract: We report simple rigidity theorems for Euler products under deformations of Euler factors. Certain products of the Riemann zeta function are rigid in the sense that there exist no deformations which preserve the meromorphy on \(\mathbb{C}\).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M41 Other Dirichlet series and zeta functions

References:

[1] T. Estermann, On Certain Functions Represented by Dirichlet Series, Proc. London Math. Soc. (2) 27 (1928), no. 6, 435-448. · JFM 54.0366.03
[2] H. Hamburger, Über die Riemannsche Funktionalgleichung der \(\xi \)-Funktion, Math. Z. 10 (1921), no. 3-4, 240-254. · JFM 48.1210.03
[3] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), no. 1, 664-699. · JFM 62.1207.01
[4] N. Kurokawa, On the meromorphy of Euler products, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), no. 6, 163-166. · Zbl 0425.12011
[5] N. Kurokawa, On the meromorphy of Euler products. I, Proc. London Math. Soc. (3) 53 (1986), no. 1, 1-47. · Zbl 0595.10031
[6] N. Kurokawa, On the meromorphy of Euler products. II, Proc. London Math. Soc. (3) 53 (1986), no. 2, 209-236. · Zbl 0609.10020
[7] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183. · Zbl 0033.11702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.