Moaaz, Osama; Elabbasy, Elmetwally M.; Mahjoub, Hamida Asymptotic behavior of a new class of nonlinear rational difference equations. (English) Zbl 1489.39011 Rocky Mt. J. Math. 51, No. 5, 1781-1792 (2021). Summary: This paper is concerned with the asymptotic behavior of solutions of a new class of the nonlinear rational difference equations. We establish new criteria for stability (local and global) and boundedness of solutions of the studied equation. Moreover, we investigate the periodic character (periodic two and three) of the solutions of these equations, by using new techniques. Finally, we give some interesting examples in order to verify our results. MSC: 39A20 Multiplicative and other generalized difference equations 39A23 Periodic solutions of difference equations 39A30 Stability theory for difference equations Keywords:difference equations; equilibrium points; local stability; global stability; periodic solution PDFBibTeX XMLCite \textit{O. Moaaz} et al., Rocky Mt. J. Math. 51, No. 5, 1781--1792 (2021; Zbl 1489.39011) Full Text: DOI Link References: [1] A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On the recursive sequence \[x_{n+1}=\alpha+x_{n-1}/x_n\]”, J. Math. Anal. Appl. 233:2 (1999), 790-798. · Zbl 0962.39004 · doi:10.1006/jmaa.1999.6346 [2] E. M. Elsayed, “New method to obtain periodic solutions of period two and three of a rational difference equation”, Nonlinear Dynam. 79:1 (2015), 241-250. · Zbl 1331.39003 · doi:10.1007/s11071-014-1660-2 [3] M. R. S. Kulenović and G. Ladas, Dynamics of second order rational difference equations, Chapman & Hall/CRC, Boca Raton, FL, 2002. · Zbl 0981.39011 [4] H. El-Metwally, E. A. Grove, and G. Ladas, “A global convergence result with applications to periodic solutions”, J. Math. Anal. Appl. 245:1 (2000), 161-170. · Zbl 0971.39004 · doi:10.1006/jmaa.2000.6747 [5] O. Moaaz, “Comment on “New method to obtain periodic solutions of period two and three of a rational difference equation” [Nonlinear Dynamics 79:1 (2015), 241-250]”, Nonlinear Dynamics 88:2 (2017), 1043-1049. · Zbl 1375.39035 [6] O. Moaaz and M. A. E. Abdelrahman, “Behaviour of the new class of the rational difference equations”, Electron. J. Math. Anal. Appl. 4:2 (2016), 129-138. · Zbl 1390.39017 [7] O. Moaaz, H. Mahjoub, and A. Muhib, “On the periodicity of general class of difference equations”, Axioms 9:3 (2020), 75. · Zbl 1474.34449 [8] O. Öcalan, “Dynamics of the difference equation \[x_{n+1}=p_n+{\frac{x_{n-k}}{x_n}}\] with a period-two coefficient”, Appl. Math. Comput. 228 (2014), 31-37. · Zbl 1364.39012 · doi:10.1016/j.amc.2013.11.020 [9] M. Saleh and M. Aloqeili, “On the rational difference equation \[y_{n+1}=A+{\frac{y_{n-k}}{y_n}} \]”, Appl. Math. Comput. 171:2 (2005), 862-869. · Zbl 1092.39019 · doi:10.1016/j.amc.2005.01.094 [10] T. Sun and H. Xi, “On convergence of the solutions of the difference equation \[x_{n+1}=1+{\frac{x_{n-1}}{x_n}} \]”, J. Math. Anal. Appl. 325:2 (2007), 1491-1494 · Zbl 1108.39013 · doi:10.1016/j.jmaa.2006.02.080 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.