×

Topology of Lagrangian fibrations and Hodge theory of hyper-Kähler manifolds. (English) Zbl 1490.14019

In the paper, a compact analogue of the \(P=W\) conjecture is proved, namely that, given an irreducible holomorphic symplectic variety equipped with a Lagrangian fibration, its Hodge and perverse numbers coincide. Given \(\pi\colon X\rightarrow Y\) a proper morphism with \(X\) a nonsingular algebraic variety, the perverse \(t\)-structure on the constructible derived category \(D_c^b(Y)\) induces a filtration on the cohomology \(H^*(X,\mathbb{Q})\): \[ P_{0} H^*(X,\mathbb{Q})\subseteq P_{1} H^*(X,\mathbb{Q})\subseteq\cdots \subseteq H^*(X,\mathbb{Q}). \] The perverse numbers are then given by the dimensions of the graded pieces of \(H^*(X,\mathbb{Q})\) associated to this filtration: \[ ^p h^{i,j}(X):= \dim\left( P_i H^{i+j}(X,\mathbb{Q})/P_{i-1} H^{i+j}(X,\mathbb{Q})\right). \] In the case where \(X\) is an irreducible holomorphic symplectic variety and \(\pi\) is a Lagrangian fibration, the authors show in Theorem 0.2 that Hodge and perverse numbers coincide, i.e., that \[ ^p h^{i,j}(X)=h^{i,j}(X). \] As an application, it is shown in Theorem 0.4.b that the intersection cohomology of the base of a Lagrangian fibration is always isomorphic to the cohomology of \(\mathbb{P}^n\). This gives a positive answer to a cohomological version of the well known conjecture which predicts that the base \(B\) is isomorphic to a projective space. The equality between Hodge and perverse numbers can also be used to study the restriction of cohomological classes on \(X\) to a nonsingular fiber \(X_b\): Denoting by \(\eta\) the relative ample class, it is proven in Theorem 0.4.a that the image of the restriction map \(H^d(X,\mathbb{Q})\rightarrow H^d(X_b,\mathbb{Q})\) is spanned by \(\eta^k|_{X_b}\) if \(d=2k\) is even and it is zero if \(d\) is odd. An alternative and more direct proof of this last statement is provided by Voisin in Appendix B. As an additional application, the authors describe in Theorem 0.5 the role played by perverse numbers in the construction of curve counting invariants on \(S\times \mathbb{C}\), where \(S\) is a \(K3\) surface.

MSC:

14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14J42 Holomorphic symplectic varieties, hyper-Kähler varieties
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
14D06 Fibrations, degenerations in algebraic geometry
14J28 \(K3\) surfaces and Enriques surfaces
14F45 Topological properties in algebraic geometry
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Beauville, Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1984), no. 4, 755-782. · Zbl 0537.53056
[2] A. Beauville, “Systèmes hamiltoniens complètement intégrables associés aux surfaces \[K3\]” in Problems in the Theory of Surfaces and Their Classification (Cortona, 1988), Sympos. Math. 32, Academic Press, London, 1991, 25-31. · Zbl 0827.58022
[3] A. A. Beĭlinson, J. Bernstein, and P. Deligne, “Faisceaux pervers” in Analysis and Topology on singular spaces, I (Luminy, 1981), Astérisque, 100, Soc. Math. France, Paris, 1982, 5-171.
[4] F. A. Bogomolov, On the cohomology ring of a simple hyper-Kähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996), no. 4, 612-618. · Zbl 0862.53050 · doi:10.1007/BF02247113
[5] F. Bogomolov and N. Kurnosov, Lagrangian fibrations for IHS fourfolds, preprint, arXiv:1810.11011 [math.AG].
[6] M. A. de Cataldo, Hodge-theoretic splitting mechanisms for projective maps, with an appendix containing a letter from P. Deligne, J. Singul. 7 (2013), 134-156. · Zbl 1317.14045 · doi:10.5427/jsing.2013.7h
[7] M. A. de Cataldo, T. Hausel, and L. Migliorini, Topology of Hitchin systems and Hodge theory of character varieties: the case \[{A_1} \], Ann. of Math. (2) 175 (2012), no. 3, 1329-1407. · Zbl 1375.14047 · doi:10.4007/annals.2012.175.3.7
[8] M. A. de Cataldo, T. Hausel, and L. Migliorini, Exchange between perverse and weight filtration for the Hilbert schemes of points of two surfaces, J. Singul. 7 (2013), 23-38. · Zbl 1304.14011 · doi:10.5427/jsing.2013.7c
[9] M. A. de Cataldo and D. Maulik, The perverse filtration for the Hitchin fibration is locally constant, Pure Appl. Math. Q. 16 (2020), no. 5, 1441-1464. · Zbl 1462.53062 · doi:10.4310/PAMQ.2020.v16.n5.a4
[10] M. A. de Cataldo, D. Maulik, and J. Shen, Hitchin fibrations, abelian surfaces, and the \[P=W conjecture \], to appear in J. Amer. Math. Soc., preprint, arXiv:1909.11885 [math.AG].
[11] M. A. de Cataldo and L. Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693-750. · Zbl 1094.14005 · doi:10.1016/j.ansens.2005.07.001
[12] M. A. de Cataldo and L. Migliorini, “Intersection forms, topology of algebraic maps and motivic decompositions for resolutions of threefolds” in Algebraic Cycles and Motives, Vol. 1, London Math. Soc. Lecture Note Ser. 343, Cambridge Univ. Press, Cambridge, 2007, 102-137. · Zbl 1131.14015 · doi:10.1017/CBO9780511721496.004
[13] M. A. de Cataldo and L. Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535-633. · Zbl 1181.14001 · doi:10.1090/S0273-0979-09-01260-9
[14] W. Y. Chuang, D. E. Diaconescu, and G. Pan, “BPS states and the \[P=W\] conjecture” in Moduli spaces, London Math. Soc. Lecture Note Ser. 411, Cambridge Univ. Press, Cambridge, 2014, 132-150. · Zbl 1320.14057
[15] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57. · Zbl 0219.14007
[16] P. Deligne, “Décompositions dans la catégorie dérivée,” in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, 1994, 115-128. · Zbl 0809.18008 · doi:10.1090/pspum/055.1/1265526
[17] R. Gopakumar and C. Vafa, M-Theory and topological strings-II, preprint, arXiv:hep-th/9812127 [hep-th].
[18] A. Harder, Z. Li, J. Shen, and Q. Yin, \[P=W\]for Lagrangian fibrations and degenerations of hyper-Kähler manifolds, Forum Math. Sigma 9 (2021), e50. · Zbl 1467.14101 · doi:10.1017/fms.2021.31
[19] T. Hausel, E. Letellier, and F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J. 160 (2011), no. 2, 323-400. · Zbl 1246.14063 · doi:10.1215/00127094-1444258
[20] T. Hausel and F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, with an appendix by N. M. Katz, Invent. Math. 174 (2008), no. 3, 555-624. · Zbl 1213.14020 · doi:10.1007/s00222-008-0142-x
[21] T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003), no. 1, 197-229. · Zbl 1043.14011 · doi:10.1007/s00222-003-0286-7
[22] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126. · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[23] S. Hosono, M.-H. Saito, and A. Takahashi, Relative Lefschetz action and BPS state counting, Internat. Math. Res. Notices 2001, no. 15, 783-816. · Zbl 1060.14017 · doi:10.1155/S107379280100040X
[24] D. Huybrechts and C. Xu, Lagrangian fibrations of hyperkähler fourfolds, to appear in J. Inst. Math. Jussieu., preprint, arXiv:1902.10440 [math AG].
[25] J.-M. Hwang, Base manifolds for fibrations of projective irreducible symplectic manifolds, Invent. Math. 174 (2008), no. 3, 625-644. · Zbl 1161.14029 · doi:10.1007/s00222-008-0143-9
[26] N. Jacobson, Lie Algebras, Dover, New York, 1979.
[27] S. Katz, A. Klemm, and R. Pandharipande, “On the motivic stable pairs invariants of \[K3\] surfaces,” with an appendix by R. P. Thomas, in \[K3\]Surfaces and Their Moduli, Progr. Math. 315, Birkhäuser, Cham, 2016, 111-146. · Zbl 1349.14138 · doi:10.1007/978-3-319-29959-4_6
[28] S. Katz, A. Klemm, and C. Vafa, M-theory, topological strings, and spinning black holes, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1445-1537. · Zbl 0985.81081 · doi:10.4310/ATMP.1999.v3.n5.a6
[29] T. Kawai and K. Yoshioka, String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000), no. 2, 397-485. · Zbl 1013.81043 · doi:10.4310/ATMP.2000.v4.n2.a7
[30] Y.-H. Kiem and J. Li, Categorification of Donaldson-Thomas invariants via perverse sheaves, preprint, arXiv:1212.6444v5 [math.AG].
[31] E. Looijenga and V. A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997), no. 2, 361-412. · Zbl 0890.53030 · doi:10.1007/s002220050166
[32] E. Markman, Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces, J. Reine Angew. Math. 544 (2002), 61-82. · Zbl 0988.14019 · doi:10.1515/crll.2002.028
[33] D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999), no. 1, 79-83. Addendum, Topology 40 (2001), no. 2, 431-432. · Zbl 0932.32027 · doi:10.1016/S0040-9383(99)00048-8
[34] D. Matsushita, Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds, Math. Res. Lett. 7 (2000), no. 4, 389-391. · Zbl 1002.53050 · doi:10.4310/MRL.2000.v7.n4.a4
[35] D. Matsushita, Higher direct images of dualizing sheaves of Lagrangian fibrations, Amer. J. Math. 127 (2005), no. 2, 243-259. · Zbl 1069.14011
[36] D. Matsushita, “On deformations of Lagrangian fibrations” in \[K3\]Surfaces and Their Moduli, Progr. Math. 315, Birkhäuser, Cham, 2016, 237-243. · Zbl 1350.53104 · doi:10.1007/978-3-319-29959-4_9
[37] D. Maulik, R. Pandharipande, and R. Thomas, \[ Curves on K3\]surfaces and modular forms, with an appendix by A. Pixton, J. Topol. 3 (2010), no. 4, 937-996. · Zbl 1207.14058 · doi:10.1112/jtopol/jtq030
[38] D. Maulik and Y. Toda, Gopakumar-Vafa invariants via vanishing cycles, Invent. Math. 213 (2018), no. 3, 1017-1097. · Zbl 1400.14141 · doi:10.1007/s00222-018-0800-6
[39] A. Nijenhuis and R. W. Richardson Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175-179. · Zbl 0153.04402 · doi:10.1090/S0002-9904-1967-11703-8
[40] K. Oguiso, Picard number of the generic fiber of an abelian fibered hyperkähler manifold, Math. Ann. 344 (2009), no. 4, 929-937. · Zbl 1222.14019 · doi:10.1007/s00208-009-0335-7
[41] W. Ou, Lagrangian fibrations on symplectic fourfolds, J. Reine Angew. Math. 746 (2019), 117-147. · Zbl 1477.14019 · doi:10.1515/crelle-2016-0004
[42] R. Pandharipande and R. P. Thomas, “13/2 ways of counting curves” in Moduli Spaces, London Math. Soc. Lecture Note Ser. 411, Cambridge Univ. Press, Cambridge, 2014, 282-333. · Zbl 1310.14031
[43] R. Pandharipande and R. P. Thomas, The Katz-Klemm-Vafa conjecture for \[K3 surfaces \], Forum Math. Pi 4 (2016), e4. · Zbl 1401.14223 · doi:10.1017/fmp.2016.2
[44] J. Shen and Z. Zhang, Perverse filtrations, Hilbert schemes, and the \[P=W\]conjecture for parabolic Higgs bundles, Algebr. Geom. 8 (2021), no. 4, 465-489. · Zbl 1483.14033 · doi:10.14231/AG-2021-014
[45] V. Shende, The weights of the tautological classes of character varieties, Int. Math. Res. Not. IMRN 2017, no. 22, 6832-6840. · Zbl 1405.14037 · doi:10.1093/imrn/rnv363
[46] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95. · Zbl 0814.32003
[47] C. T. Simpson, “The Hodge filtration on nonabelian cohomology” in Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Providence, 1997, 217-281. · Zbl 0914.14003 · doi:10.1090/pspum/062.2/1492538
[48] M. S. Verbitsky [Verbitskiĭ], Action of the Lie algebra of \[SO(5)\]on the cohomology of a hyper-Kähler manifold, Funct. Anal. Appl. 24 (1990), no. 3, 229-230. · Zbl 0717.53041 · doi:10.1007/BF01077967
[49] M. S. Verbitsky [Verbitskiĭ], Cohomology of compact hyperkaehler manifolds, Ph.D. dissertation, Harvard University, 1995. · Zbl 0827.53030
[50] M. S. Verbitsky [Verbitskiĭ], Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601-611. · Zbl 0861.53069 · doi:10.1007/BF02247112
[51] C. Voisin, “Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes” in Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press, Cambridge, 1992, 294-303. · Zbl 0765.32012 · doi:10.1017/CBO9780511662652.022
[52] G. Williamson, The Hodge theory of the decomposition theorem, Astérisque 390 (2017), 335-367, Séminaire Bourbaki 2015/2016, no. 1115. · Zbl 1373.14010
[53] Z. Zhang, Multiplicativity of perverse filtration for Hilbert schemes of fibered surfaces, Adv. Math. 312 (2017), 636-679. · Zbl 1401.14190 · doi:10.1016/j.aim.2017.03.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.