Antoine, Ramon; Perera, Francesc; Robert, Leonel; Thiel, Hannes \(C^*\)-algebras of stable rank one and their Cuntz semigroups. (English) Zbl 1490.19005 Duke Math. J. 171, No. 1, 33-99 (2022). The Cuntz semigroup is a rather fine invariant of a \(C^*\)-algebra. It is possible that it may be used to classify simple \(C^*\)-algebras which are not yet classified by the Elliott invariant. Regularity properties of the Cuntz semigroup may be related to classifiability by the Elliott invariant. Whereas \(K\)-theory only looks at equivalence classes of projections in matrix algebras over a given \(C^*\)-algebra, the Cuntz semigroup looks at equivalence classes of all positive elements, with a suitable equivalence relation that is a version of Murray-von Neumann equivalence up to \(\epsilon\).This article studies regularity properties of the Cuntz semigroup in case the underlying \(C^*\)-algebra has stable rank one. For such \(C^*\)-algebras, the Cuntz semigroup is shown to have the Riesz interpolation property. Assuming separability as well, every pair of elements of the Cuntz semigroup has an infimum, and addition is distributive over the infimum operation. For a unital \(C^*\)-algebra of stable rank one, it is shown that its dimension functions form a Choquet simplex, as conjectured by Blackadar and Handelman for all \(C^*\)-algebras. In addition, \(K_0^*(A)\), the Grothendieck group of the Cuntz semigroup, is shown to be an interpolation group.In case no subquotient of the \(C^*\)–algebra is an elementary\(C^*\)–algebra, it is characterised which functions on the space of quasitraces may be written as ranks of Cuntz semigroup elements. The global Glimm halving problem also has a positive answer for \(C^*\)-algebras of stable rank one. It produces a *-homomorphism with full range to the \(C^*\)-algebra whose domain is a cone over a matrix algebra \(M_k\), provided the \(C^*\)-algebra has no finite-dimensional rpresentations of dimension less than \(k\). In particular, if the \(C^*\)-algebra has no finite-dimensional representations at all, then it receives *-homomorphisms with full range from \(M_k(C_0((0,1]))\) for all \(k\). Finally, the article characterises when the Cuntz semigroup of a simple, unital, separable \(C^*\)-algebra of stable rank one has finite radius of comparison or \(m\)-comparision for some natural number \(m\) or local comparison.Some of the results are proven for any ordered semigroup \(S\) with certain properties that Cuntz semigroups of \(C^*\)-algebras always have. The space of quasitraces on the Cuntz semigroup has an analogue \(F(S)\) in this generality, and elements of \(S\) induce functions on \(F(S)\) with certain properties. The article finds a sufficient criterion for the map from \(S\) to functions on \(F(S)\) to preserve infima. Reviewer: Ralf Meyer (Göttingen) Cited in 19 Documents MSC: 19K14 \(K_0\) as an ordered group, traces 46L35 Classifications of \(C^*\)-algebras 46L08 \(C^*\)-modules Keywords:\(C^*\)-algebra; Cuntz semigroup; Hilbert \(C^*\)-module; semilattice; stable rank one; weak comparison; inf-semilattice PDFBibTeX XMLCite \textit{R. Antoine} et al., Duke Math. J. 171, No. 1, 33--99 (2022; Zbl 1490.19005) Full Text: DOI arXiv References: [1] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb. 57, Springer, New York, 1971. · Zbl 0209.42601 [2] R. Antoine, J. Bosa, and F. Perera, Completions of monoids with applications to the Cuntz semigroup, Internat. J. Math. 22 (2011), no. 6, 837-861. · Zbl 1239.46042 · doi:10.1142/S0129167X11007057 [3] R. Antoine, J. Bosa, F. Perera, and H. Petzka, Geometric structure of dimension functions of certain continuous fields, J. Funct. Anal. 266 (2014), no. 4, 2403-2423. · Zbl 1297.46035 · doi:10.1016/j.jfa.2013.09.013 [4] R. Antoine, M. Dadarlat, F. Perera, and L. Santiago, Recovering the Elliott invariant from the Cuntz semigroup, Trans. Amer. Math. Soc. 366 (2014), no. 6, 2907-2922. · Zbl 1408.46049 · doi:10.1090/S0002-9947-2014-05833-9 [5] R. Antoine, F. Perera, L. Robert, and H. Thiel, Edwards’ condition for quasitraces on C*-algebras, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 2, 525-547. · Zbl 1469.46039 · doi:10.1017/prm.2020.26 [6] R. Antoine, F. Perera, and L. Santiago, Pullbacks, \[C(X)\]-algebras, and their Cuntz semigroup, J. Funct. Anal. 260 (2011), no. 10, 2844-2880. · Zbl 1255.46030 · doi:10.1016/j.jfa.2011.02.016 [7] R. Antoine, F. Perera, and H. Thiel, Tensor products and regularity properties of Cuntz semigroups, Mem. Amer. Math. Soc. 251 (2018), no. 1199. · Zbl 1414.46035 · doi:10.1090/memo/1199 [8] P. Ara, F. Perera, and A. S. Toms, “\(K\)-theory for operator algebras: Classification of C*-algebras” in Aspects of Operator Algebras and Applications, Contemp. Math. 534, Amer. Math. Soc., Providence, 2011, 1-71. · Zbl 1219.46053 · doi:10.1090/conm/534/10521 [9] B. Blackadar and D. Handelman, Dimension functions and traces on C*-algebras, J. Funct. Anal. 45 (1982), no. 3, 297-340. · Zbl 0513.46047 · doi:10.1016/0022-1236(82)90009-X [10] B. Blackadar, L. Robert, A. P. Tikuisis, A. S. Toms, and W. Winter, An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3657-3674. · Zbl 1279.46038 · doi:10.1090/S0002-9947-2012-05538-3 [11] B. Blackadar and M. RØrdam, Extending states on preordered semigroups and the existence of quasitraces on C*-algebras, J. Algebra 152 (1992), no. 1, 240-247. · Zbl 0789.46047 · doi:10.1016/0021-8693(92)90098-7 [12] E. Blanchard and E. Kirchberg, Global Glimm halving for \[{C^{\ast }} -bundles \], J. Operator Theory 52 (2004), no. 2, 385-420. · Zbl 1073.46509 [13] E. Blanchard and E. Kirchberg, Non-simple purely infinite C*-algebras: The Hausdorff case, J. Funct. Anal. 207 (2004), no. 2, 461-513. · Zbl 1048.46049 · doi:10.1016/j.jfa.2003.06.008 [14] L. G. Brown Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific J. Math. 71 (1977), no. 2, 335-348. · Zbl 0362.46042 · doi:10.2140/pjm.1977.71.335 [15] N. P. Brown and A. Ciuperca, Isomorphism of Hilbert modules over stably finite C*-algebras, J. Funct. Anal. 257 (2009), no. 1, 332-339. · Zbl 1173.46038 · doi:10.1016/j.jfa.2008.12.004 [16] N. P. Brown, F. Perera, and A. S. Toms, The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras, J. Reine Angew. Math. 621 (2008), 191-211. · Zbl 1158.46040 · doi:10.1515/CRELLE.2008.062 [17] J. Castillejos, S. Evington, A. Tikuisis, S. White, and W. Winter, Nuclear dimension of simple C*-algebras, Invent. Math. 224 (2021), no. 1, 245-290. · Zbl 1467.46055 · doi:10.1007/s00222-020-01013-1 [18] A. Ciuperca and G. A. Elliott, A remark on invariants for C*-algebras of stable rank one, Int. Math. Res. Not. IMRN 2008, no. 5, art. ID 158. · Zbl 1159.46036 · doi:10.1093/imrn/rnm158 [19] A. Ciuperca, G. A. Elliott, and L. Santiago, On inductive limits of type-I C*-algebras with one-dimensional spectrum, Int. Math. Res. Not. IMRN 2011, no. 11, 2577-2615. · Zbl 1232.46051 · doi:10.1093/imrn/rnq157 [20] A. Ciuperca, L. Robert, and L. Santiago, The Cuntz semigroup of ideals and quotients and a generalized Kasparov stabilization theorem, J. Operator Theory 64 (2010), no. 1, 155-169. · Zbl 1212.46084 [21] K. T. Coward, G. A. Elliott, and C. Ivanescu, The Cuntz semigroup as an invariant for C*-algebras, J. Reine Angew. Math. 623 (2008), 161-193. · Zbl 1161.46029 · doi:10.1515/CRELLE.2008.075 [22] J. Cuntz, Dimension functions on simple C*-algebras, Math. Ann. 233 (1978), no. 2, 145-153. · Zbl 0354.46043 · doi:10.1007/BF01421922 [23] M. Dadarlat and A. S. Toms, Ranks of operators in simple C*-algebras, J. Funct. Anal. 259 (2010), no. 5, 1209-1229. · Zbl 1202.46061 · doi:10.1016/j.jfa.2010.03.022 [24] K. de Silva, A note on two conjectures on dimension functions of C*-algebras, preprint, arXiv:1601.03475v1 [math.OA]. [25] G. A. Elliott, L. Robert, and L. Santiago, The cone of lower semicontinuous traces on a C*-algebra, Amer. J. Math. 133 (2011), no. 4, 969-1005. · Zbl 1236.46052 · doi:10.1353/ajm.2011.0027 [26] G. A. Elliott and M. RØrdam, “Perturbation of Hausdorff moment sequences, and an application to the theory of C*-algebras of real rank zero” in Operator Algebras: The Abel Symposium 2004, Abel Symp. 1, Springer, Berlin, 2006, 97-115. · Zbl 1118.46048 · doi:10.1007/978-3-540-34197-0_5 [27] I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati, and W. Winter, Model theory of C*-algebras, Mem. Amer. Math. Soc. 271 (2021), no. 1324. · Zbl 1484.46001 · doi:10.1090/memo/1324 [28] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous Lattices and Domains, Encyclopedia Math. Appl. 93, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1088.06001 · doi:10.1017/CBO9780511542725 [29] K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Math. Surveys Monogr. 20, Amer. Math. Soc., Providence, 1986. · Zbl 0589.06008 · doi:10.1090/surv/020 [30] K. R. Goodearl and D. E. Handelman, Rank functions and \[{K_0} \]of regular rings, J. Pure Appl. Algebra 7 (1976), no. 2, 195-216. · Zbl 0321.16009 · doi:10.1016/0022-4049(76)90032-3 [31] U. Haagerup, Quasitraces on exact C*-algebras are traces, C. R. Math. Acad. Sci. Soc. R. Can. 36 (2014), no. 2-3, 67-92. · Zbl 1325.46055 [32] J. v. B. Hjelmborg and M. RØrdam, On stability of C*-algebras, J. Funct. Anal. 155 (1998), no. 1, 153-170. · Zbl 0912.46055 · doi:10.1006/jfan.1997.3221 [33] K. K. Jensen and K. Thomsen, \[ Elements of KK -Theory \], Math. Theory Appl., Birkhäuser, Boston, 1991. · Zbl 1155.19300 · doi:10.1007/978-1-4612-0449-7 [34] E. Kirchberg and M. RØrdam, Infinite non-simple C*-algebras: Absorbing the Cuntz algebra \[{\mathcal{O}_{\text{\infty }}} \], Adv. Math. 167 (2002), no. 2, 195-264. · Zbl 1030.46075 · doi:10.1006/aima.2001.2041 [35] E. Kirchberg and M. RØrdam, Central sequence C*-algebras and tensorial absorption of the Jiang-Su algebra, J. Reine Angew. Math. 695 (2014), 175-214. · Zbl 1307.46046 · doi:10.1515/crelle-2012-0118 [36] E. Ortega, M. RØrdam, and H. Thiel, The Cuntz semigroup and comparison of open projections, J. Funct. Anal. 260 (2011), no. 12, 3474-3493. · Zbl 1222.46043 · doi:10.1016/j.jfa.2011.02.017 [37] F. Perera, The structure of positive elements for C*-algebras with real rank zero, Internat. J. Math. 8 (1997), no. 3, 383-405. · Zbl 0881.46044 · doi:10.1142/S0129167X97000196 [38] R. R. Phelps, Lectures on Choquet’s Theorem, 2nd ed., Lecture Notes in Math. 1757, Springer, Berlin, 2001. · Zbl 0997.46005 · doi:10.1007/b76887 [39] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. Lond. Math. Soc. (3) 46 (1983), no. 2, 301-333. · Zbl 0533.46046 · doi:10.1112/plms/s3-46.2.301 [40] L. Robert, Nuclear dimension and n-comparison, Münster J. Math. 4 (2011), 65-71. · Zbl 1248.46040 [41] L. Robert, Classification of inductive limits of 1-dimensional NCCW complexes, Adv. Math. 231 (2012), no. 5, 2802-2836. · Zbl 1268.46041 · doi:10.1016/j.aim.2012.07.010 [42] L. Robert, The cone of functionals on the Cuntz semigroup, Math. Scand. 113 (2013), no. 2, 161-186. · Zbl 1286.46061 · doi:10.7146/math.scand.a-15568 [43] L. Robert and M. RØrdam, Divisibility properties for C*-algebras, Proc. Lond. Math. Soc. (3) 106 (2013), no. 6, 1330-1370. · Zbl 1339.46051 · doi:10.1112/plms/pds082 [44] L. Robert and A. Tikuisis, Nuclear dimension and \[ \mathcal{Z} \]-stability of non-simple C*-algebras, Trans. Amer. Math. Soc. 369 (2017), no. 7, 4631-4670. · Zbl 1373.46057 · doi:10.1090/tran/6842 [45] M. RØrdam, The stable and the real rank of \[ \mathcal{Z} -absorbing C*-algebras \], Internat. J. Math. 15 (2004), no. 10, 1065-1084. · Zbl 1077.46054 · doi:10.1142/S0129167X04002661 [46] M. RØrdam and W. Winter, The Jiang-Su algebra revisited, J. Reine Angew. Math. 642 (2010), 129-155. · Zbl 1209.46031 · doi:10.1515/CRELLE.2010.039 [47] L. Santiago, Reduction of the dimension of nuclear C*-algebras, preprint, arXiv:1211.7159v1 [math.OA]. [48] Y. Sato, Trace spaces of simple nuclear C*-algebras with finite-dimensional extreme boundary, preprint, arXiv:1209.3000v1 [math.OA]. [49] H. Thiel, Ranks of operators in simple C*-algebras with stable rank one, Comm. Math. Phys. 377 (2020), no. 1, 37-76. · Zbl 1453.46055 · doi:10.1007/s00220-019-03491-8 [50] A. Tikuisis and A. S. Toms, On the structure of Cuntz semigroups in (possibly) nonunital C*-algebras, Canad. Math. Bull. 58 (2015), no. 2, 402-414. · Zbl 1334.46043 · doi:10.4153/CMB-2014-040-5 [51] A. Tikuisis, S. White, and W. Winter, Quasidiagonality of nuclear C*-algebras, Ann. of Math. (2) 185 (2017), no. 1, 229-284. · Zbl 1367.46044 · doi:10.4007/annals.2017.185.1.4 [52] A. S. Toms, Flat dimension growth for C*-algebras, J. Funct. Anal. 238 (2006), no. 2, 678-708. · Zbl 1111.46041 · doi:10.1016/j.jfa.2006.01.010 [53] A. S. Toms, An infinite family of non-isomorphic C*-algebras with identical K-theory, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5343-5354. · Zbl 1161.46037 · doi:10.1090/S0002-9947-08-04583-2 [54] A. S. Toms, On the classification problem for nuclear C*-algebras, Ann. of Math. (2) 167 (2008), no. 3, 1029-1044. · Zbl 1181.46047 · doi:10.4007/annals.2008.167.1029 [55] A. S. Toms, S. White, and W. Winter, \[ \mathcal{Z} \]-stability and finite-dimensional tracial boundaries, Int. Math. Res. Not. IMRN 2015, no. 10, 2702-2727. · Zbl 1335.46054 · doi:10.1093/imrn/rnu001 [56] W. Winter, Nuclear dimension and \[ \mathcal{Z} \]-stability of pure C*-algebras, Invent. Math. 187 (2012), no. 2, 259-342. · Zbl 1280.46041 · doi:10.1007/s00222-011-0334-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.