×

Existence of strong solutions for nonlinear systems of PDEs arising in convective flow. (English) Zbl 1490.35142

MSC:

35J57 Boundary value problems for second-order elliptic systems
35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Akesbi, S.; Brighi, B.; Hoernel, J. D.; Chipot, M.; Ninomiga, H., Steady free convection in a bounded and saturated porous medium, Proceedings of the 2004 Swiss-Japanese Seminar On Recent advances on Elliptic and Parabolic Issues, World Scientific Publishing Co. Pte. Ltd · Zbl 1134.76059 · doi:10.1142/9789812774170_0001
[2] Aïboudi, M.; Boudjema Djeffal, K.; Brighi, B., On the convex and convex-concave solutions of opposing mixed convection boundary layer flow in a porous medium, Abstract and Applied Analysis, 2018 (2018) · Zbl 1470.76095 · doi:10.1155/2018/4340204
[3] Aïboudi, M.; Brighi, B., On the solutions of a boundary value problem arising in free convection with prescribed heat flux, Archiv der Mathematik, 93, 2, 165-174 (2009) · Zbl 1192.34033 · doi:10.1007/s00013-009-0023-6
[4] Brighi, B.; Fruchard, A.; Sari, T., On the Blasius problem, Advances in Differential Equations, 13, 509-600 (2008) · Zbl 1158.34016
[5] Yang, G. C., An upper bound on the critical value \(\beta^\ast\) involved in the blasius problem, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1290.34029 · doi:10.1155/2010/960365
[6] Makhfi, A.; Bebbouchi, R., On the generalized Blasius equation, Afrika Matematika, 31, 5-6, 803-811 (2020) · Zbl 1474.34216 · doi:10.1007/s13370-020-00762-9
[7] Aminikhah, H.; Kazemi, S., Numerical solution of the Blasius viscous flow problem by quartic b-spline method, International Journal of Engineering Mathematics, 2016 (2016) · doi:10.1155/2016/9014354
[8] Brighi, B.; Guesmia, S., Existence of solutions and iterative approximations for nonlinear systems arising in free convection, Analysis and Applications, 07, 03, 225-241 (2009) · Zbl 1176.35044 · doi:10.1142/s0219530509001360
[9] Brighi, B.; Guesmia, S., On a nonlinear system of PDE’s arising in free convection, Journal of Elliptic and Parabolic Equations, 1, 2, 263-269 (2015) · Zbl 1386.35036 · doi:10.1007/bf03377380
[10] Le Dret, H., Nonlinear Elliptic Partial Differential Equations (2018), Cham, Switzerland: Springer International Publishing AG, Cham, Switzerland · Zbl 1405.35001
[11] Demengel, F.; Demengel, G., Functional Spaces for the Theory of Elliptic Partial Differential Equations (2012), London, UK: Springer-Verlag, London, UK · Zbl 1239.46001
[12] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Heidelberg, Germany: Springer-Verlag, Heidelberg, Germany · Zbl 0562.35001
[13] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), New York, NY, USA: Springer Science-Business Media, New York, NY, USA · Zbl 1220.46002
[14] Pata, V., Fixed Point Theorems and Applications (2019), Cham, Switzerland: Springer Nature Switzerland AG, Cham, Switzerland · Zbl 1448.47001
[15] Troianiello, G. M., Elliptic Differential Equations and Obstacle Problems (1987), New York, NY, USA: Plenum Press, New York, NY, USA · Zbl 0655.35051
[16] Lopez-Gomez, J., Linear Second Order Elliptic Operators (2013), Singapore: World Scientific Publishing Co Pte Ltd, Singapore · Zbl 1304.35007
[17] Brighi, B., The equation \(f'''+f f''+g\left( f^\prime\right)=0\) and the associated boundary value problems, Results in Mathematics, 61, 3-4, 355-391 (2012) · Zbl 1267.34043 · doi:10.1007/s00025-011-0122-0
[18] Brighi, B.; Guesmia, S., On a nonlinear system of PDE’s arising in free convection, Proceedings of the conference Recent Advences on Nonlinear Parabolic and Elliptic Differential Equations, Ryukoku University, https://hal.archivesouvertes. fr/hal-00224397
[19] Evans, L. C., Partial Differential Equations (1998), Boston, MA, USA: American Mathematical Society, Boston, MA, USA · Zbl 0902.35002
[20] Merkin, J. H.; Zhang, G., On the similarity solutions for free convection in a saturated porous medium adjacent to impermeable horizontal surfaces, Wärme- und Stoffübertragung, 25, 3, 179-184 (1990) · doi:10.1007/bf01590149
[21] Taira, K., Analytic Semigroups and Semilinear Initial Boundary Value Problems (2016), London, UK: Cambridge University Press, London, UK · Zbl 1491.35004
[22] Taira, K., Boundary Value Problems and Markov Processes (2020), Heidelberg, Germany: Springer International Publishing, Heidelberg, Germany · Zbl 1456.60003
[23] Taira, K., Semigroups, Boundary Value Problems and Markov Processes (2014), Heidelberg, Germany: Springer-Verlag, Heidelberg, Germany · Zbl 1314.47001
[24] Tartar, L., An Introduction to Sobolev Spaces and Interpolation Spaces (2019), Heidelberg, Germany: Springer-Verlag, Heidelberg, Germany
[25] Wooding, R. A., Convection in a saturated porous medium at large Rayleigh number or Peclet number, Journal of Fluid Mechanics, 15, 4, 527-544 (1963) · Zbl 0114.19903 · doi:10.1017/s0022112063000434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.