×

Global uniqueness of large stable CMC spheres in asymptotically flat Riemannian \(3\)-manifolds. (English) Zbl 1491.53069

Let \((M,g)\) be a connected, complete Riemannian \(3\)-manifold, \(C^5\)-asymptotic to Schwarzschild, with mass \(m>0\). It is known that the complement of a compact subset of \(M\) admits a foliation by distinguished stable constant mean curvature spheres. The main result of this paper states that if \((M,g)\) is a manifold as before, whose scalar curvature vanishes and with horizon boundary, then every connected, closed, embedded, stable constant mean curvature surface in \((M,g)\), of large enough area, is a leaf of the canonical foliation.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C20 Global Riemannian geometry, including pinching
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), no. 3, 339-353. · Zbl 0513.53002 · doi:10.1007/BF01215045
[2] H. L. Bray, The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature, Ph.D. dissertation, Stanford University, Stanford, 1997.
[3] S. Brendle, Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 247-269. · Zbl 1273.53052 · doi:10.1007/s10240-012-0047-5
[4] S. Brendle and M. Eichmair, Large outlying stable constant mean curvature spheres in initial data sets, Invent. Math. 197 (2014), no. 3, 663-682. · Zbl 1302.53037 · doi:10.1007/s00222-013-0494-8
[5] S. Brendle, P.-K. Hung, and M.-T. Wang, A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124-144. · Zbl 1331.53078 · doi:10.1002/cpa.21556
[6] A. Carlotto, O. Chodosh, and M. Eichmair, Effective versions of the positive mass theorem, Invent. Math. 206 (2016), no. 3, 975-1016. · Zbl 1354.53071 · doi:10.1007/s00222-016-0667-3
[7] A. Carlotto and R. Schoen, Localizing solutions of the Einstein constraint equations, Invent. Math. 205 (2016), no. 3, 559-615. · Zbl 1353.83010 · doi:10.1007/s00222-015-0642-4
[8] O. Chodosh, The geometry of asymptotically hyperbolic manifolds, Ph.D. dissertation, Stanford University, Stanford, 2015.
[9] O. Chodosh, Large isoperimetric regions in asymptotically hyperbolic manifolds, Comm. Math. Phys. 343 (2016), no. 2, 393-443. · Zbl 1344.53048 · doi:10.1007/s00220-015-2457-y
[10] O. Chodosh and M. Eichmair, On far-outlying constant mean curvature spheres in asymptotically flat Riemannian 3-manifolds, J. Reine Angew. Math. 767 (2020), 161-191. · Zbl 1455.53060 · doi:10.1515/crelle-2019-0034
[11] O. Chodosh, M. Eichmair, Y. Shi, and H. Yu, Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds, Comm. Pure Appl. Math. 74 (2021), no. 4, 865-905. · Zbl 1470.53036 · doi:10.1002/cpa.21981
[12] O. Chodosh, M. Eichmair, and A. Volkmann, Isoperimetric structure of asymptotically conical manifolds, J. Differential Geom. 105 (2017), no. 1, 1-19. · Zbl 1364.53035 · doi:10.4310/jdg/1483655857
[13] D. Christodoulou and S.-T. Yau, “Some remarks on the quasi-local mass” in Mathematics and General Relativity (Santa Cruz, 1986), Contemp. Math. 71, Amer. Math. Soc., Providence, 1988, 9-14. · Zbl 0685.53050 · doi:10.1090/conm/071/954405
[14] A. A. Cooper, A compactness theorem for the second fundamental form, preprint, arXiv:1006.5697v4 [math.DG].
[15] C. De Lellis and S. Müller, Optimal rigidity estimates for nearly umbilical surfaces, J. Differential Geom. 69 (2005), no. 1, 75-110. · Zbl 1087.53004 · doi:10.4310/jdg/1121540340
[16] M. Eichmair and T. Koerber, Large area-constrained Willmore surfaces in asymptotically Schwarzschild 3-manifolds, preprint, arXiv:2101.12665v1 [math.DG].
[17] M. Eichmair and J. Metzger, On large volume preserving stable CMC surfaces in initial data sets, J. Differential Geom. 91 (2012), no. 1, 81-102. · Zbl 1278.53062 · doi:10.4310/jdg/1343133701
[18] M. Eichmair and J. Metzger, Large isoperimetric surfaces in initial data sets, J. Differential Geom. 94 (2013), no. 1, 159-186. · Zbl 1269.53071
[19] M. Eichmair and J. Metzger, Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions, Invent. Math. 194 (2013), no. 3, 591-630. · Zbl 1297.49078 · doi:10.1007/s00222-013-0452-5
[20] P. Guan and J. Li, The quermassintegral inequalities for k-convex starshaped domains, Adv. Math. 221 (2009), no. 5, 1725-1732. · Zbl 1170.53058 · doi:10.1016/j.aim.2009.03.005
[21] P. Guan, X.-N. Ma, N. Trudinger, and X. Zhu, A form of Alexandrov-Fenchel inequality, Pure Appl. Math. Q. 6 (2010), no. 4, 999-1012. · Zbl 1230.52020 · doi:10.4310/PAMQ.2010.v6.n4.a2
[22] G. Huisken, Inverse mean curvature flow and isoperimetric inequalities, video (lecture at the Institute of Advanced Study, Princeton, 2009), http://www.ias.edu/video/marston-morse-inverse-mean-curvature-flow-and-isoperimetric-inequalities.
[23] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[24] G. Huisken and S.-T. Yau, Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature, Invent. Math. 124 (1996), no. 1-3, 281-311. · Zbl 0858.53071 · doi:10.1007/s002220050054
[25] J. Metzger, Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature, J. Differential Geom. 77 (2007), no. 2, 201-236. · Zbl 1140.53013
[26] F. Morgan and M. Ritoré, Isoperimetric regions in cones, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2327-2339. · Zbl 0988.53028 · doi:10.1090/S0002-9947-02-02983-5
[27] C. Nerz, Foliations by stable spheres with constant mean curvature for isolated systems without asymptotic symmetry, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1911-1946. · Zbl 1331.53042 · doi:10.1007/s00526-015-0849-7
[28] F. Pacard and X. Xu, Constant mean curvature spheres in Riemannian manifolds, Manuscripta Math. 128 (2009), no. 3, 275-295. · Zbl 1165.53038 · doi:10.1007/s00229-008-0230-7
[29] D. Perez, On nearly umbilical hypersurfaces, Ph.D. dissertation, University of Zurich, Zurich, 2011. · doi:10.5167/UZH-164156
[30] J. Qing and G. Tian, On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds, J. Amer. Math. Soc. 20 (2007), no. 4, 1091-1110. · Zbl 1142.53024 · doi:10.1090/S0894-0347-07-00560-7
[31] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ. 3, Centre Math. Anal., Canberra, 1983. · Zbl 0546.49019
[32] L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993), no. 2, 281-326. · Zbl 0848.58012 · doi:10.4310/CAG.1993.v1.n2.a4
[33] R. Ye, “Foliation by constant mean curvature spheres on asymptotically flat manifolds” in Geometric Analysis and the Calculus of Variations, Int. Press, Cambridge, MA, 1996, 369-383. · Zbl 0932.53026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.