×

Pointwise boundary behavior of large solutions to \(\infty\)-Laplacian equations. (English) Zbl 1492.35050

Summary: We study the pointwise boundary behavior of the \(\infty\)-Laplacian problem \[\Delta_\infty u = b(x) f(u), \quad u \geq 0, x \in \Omega, u|_{\partial\Omega} = \infty,\] where \(b \in C(\bar{\Omega})\) is positive in \(\Omega\), \(f \in C[0, \infty) \cap C^1 (0, \infty)\) is positive and nondecreasing on \((0,\infty)\) and satisfies an Keller-Osserman type condition.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
35D40 Viscosity solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
35J62 Quasilinear elliptic equations
35J67 Boundary values of solutions to elliptic equations and elliptic systems

References:

[1] G. Aronsson, “Extension of functions satisfying Lipschitz conditions”, Ark. Mat. 6 (1967), 551-561. · Zbl 0158.05001 · doi:10.1007/BF02591928
[2] L. Bieberbach, “\[ \Delta u=e^u\] und die automorphen Funktionen”, Math. Ann. 77:2 (1916), 173-212. · doi:10.1007/BF01456901
[3] F. C. Cîrstea and Y. Du, “General uniqueness results and variation speed for blow-up solutions of elliptic equations”, Proc. London Math. Soc. (3) 91:2 (2005), 459-482. · Zbl 1108.35068 · doi:10.1112/S0024611505015273
[4] F.-C. Cîrstea and V. Rădulescu, “Uniqueness of the blow-up boundary solution of logistic equations with absorbtion”, C. R. Math. Acad. Sci. Paris 335:5 (2002), 447-452. · Zbl 1183.35124 · doi:10.1016/S1631-073X(02)02503-7
[5] F.-C. Cîrstea and V. Rădulescu, “Asymptotics for the blow-up boundary solution of the logistic equation with absorption”, C. R. Math. Acad. Sci. Paris 336:3 (2003), 231-236. · Zbl 1068.35035 · doi:10.1016/S1631-073X(03)00027-X
[6] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 277:1 (1983), 1-42. · Zbl 0599.35024 · doi:10.2307/1999343
[7] M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. 282:2 (1984), 487-502. · Zbl 0543.35011 · doi:10.2307/1999247
[8] S. Huang, Q. Tian, S. Zhang, J. Xi, and Z.-e. Fan, “The exact blow-up rates of large solutions for semilinear elliptic equations”, Nonlinear Anal. 73:11 (2010), 3489-3501. · Zbl 1200.35134 · doi:10.1016/j.na.2010.06.069
[9] R. Jensen, “Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient”, Arch. Rational Mech. Anal. 123:1 (1993), 51-74. · Zbl 0789.35008 · doi:10.1007/BF00386368
[10] J. B. Keller, “On solutions of \[\Delta u=f(u)\]”, Comm. Pure Appl. Math. 10 (1957), 503-510. · Zbl 0090.31801 · doi:10.1002/cpa.3160100402
[11] A. C. Lazer and P. J. McKenna, “On a problem of Bieberbach and Rademacher”, Nonlinear Anal. 21:5 (1993), 327-335. · Zbl 0833.35052 · doi:10.1016/0362-546X(93)90076-5
[12] C. Loewner and L. Nirenberg, “Partial differential equations invariant under conformal or projective transformations”, pp. 245-272 in Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974. · Zbl 0298.35018
[13] J. López-Gómez, “The boundary blow-up rate of large solutions”, J. Differential Equations 195:1 (2003), 25-45. · Zbl 1130.35329 · doi:10.1016/j.jde.2003.06.003
[14] J. López-Gómez, “Optimal uniqueness theorems and exact blow-up rates of large solutions”, J. Differential Equations 224:2 (2006), 385-439. · Zbl 1208.35036 · doi:10.1016/j.jde.2005.08.008
[15] V. Marić, Regular variation and differential equations, Lecture Notes in Mathematics 1726, Springer, Berlin, 2000. · Zbl 0946.34001 · doi:10.1007/BFb0103952
[16] L. Mi, “Boundary behavior for the solutions to Dirichlet problems involving the infinity-Laplacian”, J. Math. Anal. Appl. 425:2 (2015), 1061-1070. · Zbl 1312.35071 · doi:10.1016/j.jmaa.2014.12.070
[17] L. Mi, “Blow-up rates of large solutions for infinity Laplace equations”, Appl. Math. Comput. 298 (2017), 36-44. · Zbl 1411.35119 · doi:10.1016/j.amc.2016.11.007
[18] A. Mohammed and S. Mohammed, “On boundary blow-up solutions to equations involving the \[\infty \]-Laplacian”, Nonlinear Anal. 74:16 (2011), 5238-5252. · Zbl 1223.35141 · doi:10.1016/j.na.2011.04.022
[19] A. Mohammed and S. Mohammed, “Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms”, Nonlinear Anal. 75:6 (2012), 3249-3261. · Zbl 1241.35101 · doi:10.1016/j.na.2011.12.026
[20] R. Osserman, “On the inequality \[\Delta u\geq f(u)\]”, Pacific J. Math. 7 (1957), 1641-1647. · Zbl 0083.09402 · doi:10.2140/pjm.1957.7.1641
[21] H. Rademacher, “Einige besondere problem partieller Differentialgleichungen”, pp. 838-845 in Die Differentialund Integralgleichungen, der Mechanik und Physik, \(I, 2\) nd ed., Rosenberg, New York, 1943.
[22] S. I. Resnick, Extreme values, regular variation, and point processes, Applied probability: a series of the applied probability trust 4, Springer, New York, 1987. · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[23] E. Seneta, Regularly varying functions, Lecture Notes in Mathematics 508, Springer, New York, 1976. · Zbl 0324.26002
[24] H. Wan, “The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations”, Z. Angew. Math. Phys. 67:4 (2016), art. id. 97. · Zbl 1366.35046 · doi:10.1007/s00033-016-0694-3
[25] H. Wan, “The second order expansion of boundary blow-up solutions for infinity-Laplacian equations”, J. Math. Anal. Appl. 436:1 (2016), 179-202. · Zbl 1331.35059 · doi:10.1016/j.jmaa.2015.11.054
[26] H. Wan, X. Li, B. Li, and Y. Shi, “Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities”, Nonlinear Anal. Real World Appl. 45 (2019), 506-530. · Zbl 1412.35148 · doi:10.1016/j.nonrwa.2018.07.021
[27] W. Wang, H. Gong, and S. Zheng, “Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations”, J. Differential Equations 256:11 (2014), 3721-3742. · Zbl 1287.35038 · doi:10.1016/j.jde.2014.02.018
[28] W. Wang, H. Gong, X. He, and S. Zheng, “Asymptotic boundary estimates to infinity Laplace equations with \[\Gamma \]-varying nonlinearity”, J. Math. Anal. Appl. 436:1 (2016), 39-65. · Zbl 1335.35072 · doi:10.1016/j.jmaa.2015.11.046
[29] Z. Zhang, “Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms”, Nonlinear Anal. 73:10 (2010), 3348-3363. · Zbl 1198.35077 · doi:10.1016/j.na.2010.07.017
[30] Z. Zhang, “Boundary behavior of large viscosity solutions to infinity Laplace equations”, Z. Angew. Math. Phys. 66:4 (2015), 1453-1472. · Zbl 1321.35049 · doi:10.1007/s00033-014-0470-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.