Puri, Rajan Nonuniqueness for the \(ab\)-family of equations with peakon travelling waves on the circle. (English) Zbl 1492.35231 Rocky Mt. J. Math. 52, No. 2, 707-715 (2022). Summary: Peakon traveling wave solutions on the circle are derived for the cubic \(ab\)-family of equations, which includes both the Fokas-Olver-Rosenau-Qiao (FORQ) and Novikov (NE) equations. For \(a \neq 0\), it is proved that there exists an initial data in the Sobolev space \(H^s, s < \frac{3}{2}\), with nonunique solutions on the circle. We construct a two-peakon solution with an asymmetric peakon-antipeakon initial profile that collides at a finite time. At the time of collision, the two-peakon solution reduces to a single peakon solution, which will complete the proof of nonuniqueness. Cited in 2 Documents MSC: 35Q35 PDEs in connection with fluid mechanics Keywords:well-posedness; initial value problem; Cauchy problem; Sobolev spaces; Camassa-Holm equation; solitons; peakon × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] A. Alexandrou Himonas and D. Mantzavinos, “The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation”, Nonlinear Anal. 95 (2014), 499-529. · Zbl 1282.35328 · doi:10.1016/j.na.2013.09.028 [2] A. Alexandrou Himonas and D. Mantzavinos, “The Cauchy problem for a 4-parameter family of equations with peakon traveling waves”, Nonlinear Anal. 133 (2016), 161-199. · Zbl 1330.35371 · doi:10.1016/j.na.2015.12.012 [3] A. S. Fokas, “On a class of physically important integrable equations”, Phys. D 87:1-4 (1995), 145-150. · Zbl 1194.35363 · doi:10.1016/0167-2789(95)00133-O [4] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation”, Phys. D 95:3-4 (1996), 229-243. · Zbl 0900.35345 · doi:10.1016/0167-2789(96)00048-6 [5] Z. Guo, X. Liu, L. Molinet, and Z. Yin, “Ill-posedness of the Camassa-Holm and related equations in the critical space”, J. Differential Equations 266:2-3 (2019), 1698-1707. · Zbl 1403.35322 · doi:10.1016/j.jde.2018.08.013 [6] A. A. Himonas and C. Holliman, “The Cauchy problem for the Novikov equation”, Nonlinearity 25:2 (2012), 449-479. · Zbl 1232.35145 · doi:10.1088/0951-7715/25/2/449 [7] A. A. Himonas and C. Holliman, “Non-uniqueness for the Fokas-Olver-Rosenau-Qiao equation”, J. Math. Anal. Appl. 470:1 (2019), 647-658. · Zbl 1400.35003 · doi:10.1016/j.jmaa.2018.10.030 [8] A. A. Himonas and D. Mantzavinos, “An \[ab\]-family of equations with peakon traveling waves”, Proc. Amer. Math. Soc. 144:9 (2016), 3797-3811. · Zbl 1401.35268 · doi:10.1090/proc/13011 [9] A. A. Himonas, C. Holliman, and C. Kenig, “Construction of 2-peakon solutions and ill-posedness for the Novikov equation”, SIAM J. Math. Anal. 50:3 (2018), 2968-3006. · Zbl 1392.35260 · doi:10.1137/17M1151201 [10] J. Holmes and R. Puri, “Non-uniqueness for the ab-family of equations”, Journal of Mathematical Analysis and Applications 493:2 (2021), 124563. · Zbl 1451.35003 [11] V. Novikov, “Generalizations of the Camassa-Holm equation”, J. Phys. A 42:34 (2009), 342002, 14. · Zbl 1181.37100 · doi:10.1088/1751-8113/42/34/342002 [12] P. J. Olver and P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E (3) 53:2 (1996), 1900-1906. · doi:10.1103/PhysRevE.53.1900 [13] Z. Qiao, “A new integrable equation with cuspons and W/M-shape-peaks solitons”, J. Math. Phys. 47:11 (2006), 112701, 9. · Zbl 1112.37063 · doi:10.1063/1.2365758 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.