Bates, Erik; Sohn, Youngtak Free energy in multi-species mixed \(p\)-spin spherical models. (English) Zbl 1492.60264 Electron. J. Probab. 27, Paper No. 52, 75 p. (2022). Summary: We prove a Parisi formula for the limiting free energy of multi-species spherical spin glasses with mixed \(p\)-spin interactions. The upper bound involves a Guerra-style interpolation and requires a convexity assumption on the model’s covariance function. Meanwhile, the lower bound adapts the cavity method of Chen so that it can be combined with the synchronization technique of Panchenko; this part requires no convexity assumption. In order to guarantee that the resulting Parisi formula has a minimizer, we formalize the pairing of synchronization maps with overlap measures so that the constraint set is a compact metric space. This space is not related to the model’s spherical structure and can be carried over to other multi-species settings. Cited in 1 ReviewCited in 10 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60G15 Gaussian processes 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics 82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses) Keywords:Aizenman-Sims-Starr scheme; cavity method; free energy; Guerra interpolation; multi-species spin glass; Parisi formula; spherical spin glass; synchronization × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Elena Agliari, Linda Albanese, Francesco Alemanno, and Alberto Fachechi, Pattern recognition in Deep Boltzmann machines, Preprint, available at 2106.08978. [2] Michael Aizenman, Robert Sims, and Shannon L. Starr, Extended variational principle for the sherrington-kirkpatrick spin-glass model, Phys. Rev. B 68 (2003), 214403. [3] Michael Aizenman, Robert Sims, and Shannon L. Starr, Mean-field spin glass models from the cavity-ROSt perspective, Contemp. Math. 437 (2007), 1-30. · Zbl 1175.82033 [4] Diego Alberici, Adriano Barra, Pierluigi Contucci, and Emanuele Mingione, Annealing and replica-symmetry in deep Boltzmann machines, J. Stat. Phys. 180 (2020), no. 1-6, 665-677. · Zbl 1453.82087 [5] Diego Alberici, Francesco Camilli, Pierluigi Contucci, and Emanuele Mingione, The multi-species mean-field spin-glass on the Nishimori line, J. Stat. Phys. 182 (2021), no. 1, Paper No. 2, 20. · Zbl 1460.82025 [6] Diego Alberici, Francesco Camilli, Pierluigi Contucci, and Emanuele Mingione, The Solution of the Deep Boltzmann Machine on the Nishimori Line, Commun. Math. Phys. (2021). · Zbl 1489.82082 [7] Diego Alberici, Pierluigi Contucci, and Emanuele Mingione, Deep Boltzmann Machines: Rigorous Results at Arbitrary Depth, Ann. Henri Poincaré 22 (2021), no. 8, 2619-2642. · Zbl 1469.82025 [8] Gérard Ben Arous, Eliran Subag, and Ofer Zeitouni, Geometry and temperature chaos in mixed spherical spin glasses at low temperature: the perturbative regime, Comm. Pure Appl. Math. 73 (2020), no. 8, 1732-1828. · Zbl 1453.82089 [9] Antonio Auffinger and Wei-Kuo Chen, Free energy and complexity of spherical bipartite models, J. Stat. Phys. 157 (2014), no. 1, 40-59. · Zbl 1302.82113 [10] Antonio Auffinger and Wei-Kuo Chen, On properties of Parisi measures, Probab. Theory Related Fields 161 (2015), no. 3-4, 817-850. · Zbl 1322.60204 [11] Antonio Auffinger and Wei-Kuo Chen, The Parisi formula has a unique minimizer, Comm. Math. Phys. 335 (2015), no. 3, 1429-1444. · Zbl 1320.82033 [12] Antonio Auffinger and Wei-Kuo Chen, Parisi formula for the ground state energy in the mixed p-spin model, Ann. Probab. 45 (2017), no. 6B, 4617-4631. · Zbl 1393.60116 [13] Antonio Auffinger, Wei-Kuo Chen, and Qiang Zeng, The SK model is infinite step replica symmetry breaking at zero temperature, Comm. Pure Appl. Math. 73 (2020), no. 5, 921-943. · Zbl 1453.82088 [14] Antonio Auffinger and Qiang Zeng, Existence of two-step replica symmetry breaking for the spherical mixed p-spin glass at zero temperature, Comm. Math. Phys. 370 (2019), no. 1, 377-402. · Zbl 1482.82053 [15] Jinho Baik and Ji Oon Lee, Free energy of bipartite spherical Sherrington-Kirkpatrick model, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 4, 2897-2934. · Zbl 1467.82036 [16] Adriano Barra, Pierluigi Contucci, Emanuele Mingione, and Daniele Tantari, Multi-species mean field spin glasses. Rigorous results, Ann. Henri Poincaré 16 (2015), no. 3, 691-708. · Zbl 1327.82089 [17] Adriano Barra, Andrea Galluzzi, Francesco Guerra, Andrea Pizzoferrato, and Daniele Tantari, Mean field bipartite spin models treated with mechanical techniques, Eur. Phys. J. B 87 (2014), no. 3, Art. 74, 13. · Zbl 1425.82036 [18] Adriano Barra, Giuseppe Genovese, and Francesco Guerra, Equilibrium statistical mechanics of bipartite spin systems, J. Phys. A 44 (2011), no. 24, 245002, 22. · Zbl 1220.82059 [19] Erik Bates, Leila Sloman, and Youngtak Sohn, Replica symmetry breaking in multi-species Sherrington-Kirkpatrick model, J. Stat. Phys. 174 (2019), no. 2, 333-350. · Zbl 1409.60138 [20] Erik Bates and Youngtak Sohn, Crisanti-Sommers formula and simultaneous symmetry breaking in multi-species spherical spin glasses, Preprint, available at 2109.14791. · Zbl 1409.60138 [21] Hong-Bin Chen, Hamilton-Jacobi equations for nonsymmetric matrix inference, Ann. Appl. Probab, To appear, available at 2006.05328. · Zbl 1498.82010 [22] Hong-Bin Chen, Jean-Christophe Mourrat, and Jiaming Xia, Statistical inference of finite-rank tensors, Preprint, available at 2104.05360. [23] Hong-Bin Chen and Jiaming Xia, Hamilton-Jacobi equations for inference of matrix tensor products, Ann. Inst. Henri Poincaré Probab. Stat, To appear, available at 2009.01678. · Zbl 1494.82021 [24] Wei-Kuo Chen, The Aizenman-Sims-Starr scheme and Parisi formula for mixed p-spin spherical models, Electron. J. Probab. 18 (2013), no. 94, 14. · Zbl 1288.60127 [25] Wei-Kuo Chen, Phase transition in the spiked random tensor with Rademacher prior, Ann. Statist. 47 (2019), no. 5, 2734-2756. · Zbl 1426.82022 [26] Wei-Kuo Chen and Arnab Sen, Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed p-spin models, Comm. Math. Phys. 350 (2017), no. 1, 129-173. · Zbl 1360.82041 [27] Pierluigi Contucci and Emanuele Mingione, A multi-scale spin-glass mean-field model, Comm. Math. Phys. 368 (2019), no. 3, 1323-1344. · Zbl 1416.82045 [28] A. Crisanti and H.-J. Sommers, The spherical p-spin interaction spin glass model: the statics, Z. Phys. B Con. Mat. 87 (1992), no. 3, 341-354. [29] Partha S. Dey and Qiang Wu, Fluctuation results for multi-species Sherrington-Kirkpatrick model in the replica symmetric regime, J. Stat. Phys. 185 (2021), no. 3, Paper No. 22, 40. · Zbl 1484.82064 [30] L. N. Dovbysh and V. N. Sudakov, Gram-de Finetti matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 119 (1982), 77-86, 238, 244-245, Problems of the theory of probability distribution, VII. · Zbl 0496.60018 [31] S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F: Met. Phys. 5 (1975), no. 5, 965-974. [32] Micaela Fedele and Pierluigi Contucci, Scaling limits for multi-species statistical mechanics mean-field models, J. Stat. Phys. 144 (2011), no. 6, 1186-1205. · Zbl 1230.82013 [33] Micaela Fedele and Francesco Unguendoli, Rigorous results on the bipartite mean-field model, J. Phys. A 45 (2012), no. 38, 385001, 18. · Zbl 1260.82087 [34] Ignacio Gallo and Pierluigi Contucci, Bipartite mean field spin systems. Existence and solution, Math. Phys. Electron. J. 14 (2008), Paper 1, 21. · Zbl 1143.82304 [35] Giuseppe Genovese, Minimax formula for the replica symmetric free energy of deep restricted Boltzmann machines, Preprint, available at 2005.09424. [36] Francesco Guerra, Broken replica symmetry bounds in the mean field spin glass model, Comm. Math. Phys. 233 (2003), no. 1, 1-12. · Zbl 1013.82023 [37] Gavin S. Hartnett, Edward Parker, and Edward Geist, Replica symmetry breaking in bipartite spin glasses and neural networks, Phys. Rev. E 98 (2018), 022116. [38] Aukosh Jagannath, Justin Ko, and Subhabrata Sen, Max κ-cut and the inhomogeneous Potts spin glass, Ann. Appl. Probab. 28 (2018), no. 3, 1536-1572. · Zbl 1423.90227 [39] Aukosh Jagannath and Ian Tobasco, A dynamic programming approach to the Parisi functional, Proc. Amer. Math. Soc. 144 (2016), no. 7, 3135-3150. · Zbl 1376.60081 [40] Aukosh Jagannath and Ian Tobasco, Low temperature asymptotics of spherical mean field spin glasses, Comm. Math. Phys. 352 (2017), no. 3, 979-1017. · Zbl 1378.82029 [41] Aukosh Jagannath and Ian Tobasco, Bounds on the complexity of Replica Symmetry Breaking for spherical spin glasses, Proc. Amer. Math. Soc. 146 (2018), no. 7, 3127-3142. · Zbl 1390.60353 [42] Pax Kivimae, The Ground State Energy and Concentration of Complexity in Spherical Bipartite Models, Preprint, available at 2107.13138. [43] Justin Ko, Free energy of multiple systems of spherical spin glasses with constrained overlaps, Electron. J. Probab. 25 (2020), Paper No. 28, 34. · Zbl 1437.60075 [44] J. M. Kosterlitz, D. J. Thouless, and Raymund C. Jones, Spherical model of a spin-glass, Phys. Rev. Lett. 36 (1976), 1217-1220. [45] Qun Liu, Fluctuations for the Bipartite Sherrington-Kirkpatrick Model, J. Stat. Phys. 184 (2021), no. 1, Paper No. 12. · Zbl 1481.82022 [46] Benjamin McKenna, Complexity of bipartite spherical spin glasses, Preprint, available at 2105.05043. [47] J.-C. Mourrat, The Parisi formula is a Hamilton-Jacobi equation in Wasserstein space, Canad. J. Math, To appear, available at 1906.08471. [48] J.-C. Mourrat, Hamilton-Jacobi equations for finite-rank matrix inference, Ann. Appl. Probab. 30 (2020), no. 5, 2234-2260. · Zbl 1460.82007 [49] J.-C. Mourrat, Hamilton-Jacobi equations for mean-field disordered systems, Ann. H. Lebesgue 4 (2021), 453-484 (en). · Zbl 1484.82020 [50] Jean-Christophe Mourrat, Free energy upper bound for mean-field vector spin glasses, Preprint, available at 2010.09114. · Zbl 1486.82044 [51] Jean-Christophe Mourrat, Nonconvex interactions in mean-field spin glasses, Probability and Mathematical Physics 2 (2021), no. 2, 61-119. · Zbl 1486.82044 [52] Jean-Christophe Mourrat and Dmitry Panchenko, Extending the Parisi formula along a Hamilton-Jacobi equation, Electron. J. Probab. 25 (2020), Paper No. 23, 17. · Zbl 1439.82019 [53] James R Munkres, Topology, Prentice Hall, 2000. · Zbl 0951.54001 [54] Dmitry Panchenko, A note on Talagrand’s positivity principle, Electron. Comm. Probab. 12 (2007), 401-410. · Zbl 1140.60355 [55] Dmitry Panchenko, On the Dovbysh-Sudakov representation result, Electron. Commun. Probab. 15 (2010), 330-338. · Zbl 1226.60050 [56] Dmitry Panchenko, The Parisi ultrametricity conjecture, Ann. of Math. (2) 177 (2013), no. 1, 383-393. · Zbl 1270.60060 [57] Dmitry Panchenko, The Sherrington-Kirkpatrick model, Springer Monographs in Mathematics, Springer, New York, 2013. · Zbl 1266.82005 [58] Dmitry Panchenko, The Parisi formula for mixed p-spin models, Ann. Probab. 42 (2014), no. 3, 946-958. · Zbl 1292.82020 [59] Dmitry Panchenko, The free energy in a multi-species Sherrington-Kirkpatrick model, Ann. Probab. 43 (2015), no. 6, 3494-3513. · Zbl 1338.60237 [60] Dmitry Panchenko, Free energy in the mixed p-spin models with vector spins, Ann. Probab. 46 (2018), no. 2, 865-896. · Zbl 1430.60032 [61] Dmitry Panchenko, Free energy in the Potts spin glass, Ann. Probab. 46 (2018), no. 2, 829-864. · Zbl 1430.60088 [62] Dmitry Panchenko and Michel Talagrand, On the overlap in the multiple spherical SK models, Ann. Probab. 35 (2007), no. 6, 2321-2355. · Zbl 1128.60086 [63] G. Parisi, Infinite number of order parameters for spin-glasses, Phys. Rev. Lett. 43 (1979), 1754-1756. [64] G. Parisi, A sequence of approximated solutions to the S-K model for spin glasses, J. Phys. A: Math. Gen. 13 (1980), no. 4, L115-L121. [65] David Sherrington and Scott Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35 (1975), no. 26, 1792-1796. [66] Eliran Subag, Free energy landscapes in spherical spin glasses, Preprint, available at 1804.10576. [67] Eliran Subag, The free energy of spherical pure p-spin models – computation from the TAP approach, Preprint, available at 2101.04352. [68] Eliran Subag, On the second moment method and RS phase of multi-species spherical spin glasses, Preprint, available at 2111.07133. [69] Eliran Subag, TAP approach for multi-species spherical spin glasses I: general theory, Preprint, available at 2111.07132. [70] Eliran Subag, TAP approach for multi-species spherical spin glasses II: the free energy of the pure models, Preprint, available at 2111.07134. [71] Eliran Subag, The geometry of the Gibbs measure of pure spherical spin glasses, Invent. Math. 210 (2017), no. 1, 135-209. · Zbl 1379.60043 [72] Michel Talagrand, Free energy of the spherical mean field model, Probab. Theory Related Fields 134 (2006), no. 3, 339-382. · Zbl 1130.82019 [73] Michel Talagrand, The Parisi formula, Ann. of Math. (2) 163 (2006), no. 1, 221-263. · Zbl 1137.82010 [74] Michel Talagrand, A general form of certain mean field models for spin glasses, Probab. Theory Related Fields 143 (2009), no. 1-2, 97-111. · Zbl 1152.82011 [75] Michel Talagrand, Mean field models for spin glasses. Volume II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 55, Springer, Heidelberg, 2011, Advanced replica-symmetry and low temperature. · Zbl 1214.82002 [76] D. J. Thouless, P. W. Anderson, and R. G. Palmer, Solution of ‘Solvable model of a spin glass’, Philosophical Magazine 35 (1977), no. 3, 593-601. [77] Cédric Villani, Optimal transport. old and new., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. · Zbl 1156.53003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.